These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 8298060)
1. Detection of intermediate protein conformations by room temperature tryptophan phosphorescence spectroscopy during denaturation of Escherichia coli alkaline phosphatase. Mersol JV; Steel DG; Gafni A Biophys Chem; 1993 Dec; 48(2):281-91. PubMed ID: 8298060 [TBL] [Abstract][Full Text] [Related]
2. Study on Escherichia coli alkaline phosphatase conformation by phosphorimetry in the presence of denaturant. Zhang HR; Guo SY; Li L; Cai MY Spectrochim Acta A Mol Biomol Spectrosc; 2003 Nov; 59(13):3185-91. PubMed ID: 14583294 [TBL] [Abstract][Full Text] [Related]
3. Time-resolved protein phosphorescence in the stopped-flow: denaturation of horse liver alcohol dehydrogenase by urea and guanidine hydrochloride. Gonnelli M; Strambini GB Biochemistry; 1997 Dec; 36(51):16212-20. PubMed ID: 9405055 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen exchange at the core of Escherichia coli alkaline phosphatase studied by room-temperature tryptophan phosphorescence. Fischer CJ; Schauerte JA; Wisser KC; Gafni A; Steel DG Biochemistry; 2000 Feb; 39(6):1455-61. PubMed ID: 10684627 [TBL] [Abstract][Full Text] [Related]
5. Phosphorescence reveals a continued slow annealing of the protein core following reactivation of Escherichia coli alkaline phosphatase. Subramaniam V; Bergenhem NC; Gafni A; Steel DG Biochemistry; 1995 Jan; 34(4):1133-6. PubMed ID: 7827062 [TBL] [Abstract][Full Text] [Related]
6. Time-resolved room temperature protein phosphorescence: nonexponential decay from single emitting tryptophans. Schlyer BD; Schauerte JA; Steel DG; Gafni A Biophys J; 1994 Sep; 67(3):1192-202. PubMed ID: 7811933 [TBL] [Abstract][Full Text] [Related]
7. Monitoring of actin unfolding by room temperature tryptophan phosphorescence. Mazhul' VM; Zaitseva EM; Shavlovsky MM; Stepanenko OV; Kuznetsova IM; Turoverov KK Biochemistry; 2003 Nov; 42(46):13551-7. PubMed ID: 14622002 [TBL] [Abstract][Full Text] [Related]
8. Differences in the pathways for unfolding and hydrogen exchange among mutants of Escherichia coli alkaline phosphatase. Fischer CJ; Schauerte JA; Wisser KC; Steel DG; Gafni A Biochim Biophys Acta; 2001 Feb; 1545(1-2):96-103. PubMed ID: 11342035 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the tryptophan residues of Escherechia coli alkaline phosphatase by phosphorescence and optically detected magnetic resonance spectroscopy. Ghosh S; Misra A; Ozarowski A; Stuart C; Maki AH Biochemistry; 2001 Dec; 40(49):15024-30. PubMed ID: 11732924 [TBL] [Abstract][Full Text] [Related]
10. Reversible unfolding of Escherichia coli alkaline phosphatase: active site can be reconstituted by a number of pathways. Sarkar SN; Ghosh N Arch Biochem Biophys; 1996 Jun; 330(1):174-80. PubMed ID: 8651692 [TBL] [Abstract][Full Text] [Related]
11. [Effect of temperature on intramolecular dynamics and conformational state of bacterial alkaline phosphatase]. Mazhul' VM; Kananovich SZh Biofizika; 2006; 51(3):418-23. PubMed ID: 16808339 [TBL] [Abstract][Full Text] [Related]
12. Phosphorescence of alkaline phosphatase of E. coli in vitro and in situ. Horie T; Vanderkooi JM Biochim Biophys Acta; 1981 Sep; 670(2):294-7. PubMed ID: 7028128 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamics of denaturation of barstar: evidence for cold denaturation and evaluation of the interaction with guanidine hydrochloride. Agashe VR; Udgaonkar JB Biochemistry; 1995 Mar; 34(10):3286-99. PubMed ID: 7880824 [TBL] [Abstract][Full Text] [Related]
14. Kinetic and thermodynamic studies of the folding/unfolding of a tryptophan-containing mutant of ribonuclease A. Sendak RA; Rothwarf DM; Wedemeyer WJ; Houry WA; Scheraga HA Biochemistry; 1996 Oct; 35(39):12978-92. PubMed ID: 8841145 [TBL] [Abstract][Full Text] [Related]
15. Long time-scale probing of the protein globular core using hydrogen-exchange and room temperature phosphorescence. Schlyer BD; Steel DG; Gafni A Biochem Biophys Res Commun; 1996 Jun; 223(3):670-4. PubMed ID: 8687454 [TBL] [Abstract][Full Text] [Related]
16. In vitro renaturation of bovine beta-lactoglobulin A leads to a biologically active but incompletely refolded state. Subramaniam V; Steel DG; Gafni A Protein Sci; 1996 Oct; 5(10):2089-94. PubMed ID: 8897609 [TBL] [Abstract][Full Text] [Related]
17. Characterization of an unfolding intermediate and kinetic analysis of guanidine hydrochloride-induced denaturation of the colicin E1 channel peptide. Steer BA; Merrill AR Biochemistry; 1997 Mar; 36(10):3037-46. PubMed ID: 9062135 [TBL] [Abstract][Full Text] [Related]
18. Characterization of lens alpha-crystallin tryptophan microenvironments by room temperature phosphorescence spectroscopy. Berger JW; Vanderkooi JM Biochemistry; 1989 Jun; 28(13):5501-8. PubMed ID: 2775720 [TBL] [Abstract][Full Text] [Related]
19. [Room temperature phosphorescence of amorphous aggregates and amyloid fibrils resulting from protein misfolding]. Mazhul' VM; Zaĭtseva EM; Shavlovskiĭ MM; Povarova OI; Kuznetsova IM; Turoverov KK Tsitologiia; 2005; 47(11):978-87. PubMed ID: 16706200 [TBL] [Abstract][Full Text] [Related]
20. Motional dynamics of a buried tryptophan reveals the presence of partially structured forms during denaturation of barstar. Swaminathan R; Nath U; Udgaonkar JB; Periasamy N; Krishnamoorthy G Biochemistry; 1996 Jul; 35(28):9150-7. PubMed ID: 8703920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]