These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
399 related articles for article (PubMed ID: 8298792)
21. Potassium channel openers act through an activation of ATP-sensitive K+ channels in guinea-pig cardiac myocytes. Escande D; Thuringer D; Le Guern S; Courteix J; Laville M; Cavero I Pflugers Arch; 1989 Sep; 414(6):669-75. PubMed ID: 2510125 [TBL] [Abstract][Full Text] [Related]
22. Effects of cytochrome P450 inhibitors on potassium currents and mechanical activity in rat portal vein. Edwards G; Zygmunt PM; Högestätt ED; Weston AH Br J Pharmacol; 1996 Oct; 119(4):691-701. PubMed ID: 8904643 [TBL] [Abstract][Full Text] [Related]
23. Effect of glibenclamide, forskolin, and isoprenaline on the parallel activation of KATP and reduction of IK by cromakalim in cardiac myocytes. Heath BM; Terrar DA Cardiovasc Res; 1994 Jun; 28(6):818-22. PubMed ID: 7923285 [TBL] [Abstract][Full Text] [Related]
24. Effects of BRL 38227 on potassium currents in smooth muscle cells isolated from rabbit portal vein and human mesenteric artery. Russell SN; Smirnov SV; Aaronson PI Br J Pharmacol; 1992 Mar; 105(3):549-56. PubMed ID: 1628142 [TBL] [Abstract][Full Text] [Related]
25. Properties and pharmacological modification of ATP-sensitive K(+) channels in cat tracheal myocytes. Teramoto N; Nakashima T; Ito Y Br J Pharmacol; 2000 Jun; 130(3):625-35. PubMed ID: 10821791 [TBL] [Abstract][Full Text] [Related]
26. Two types of ATP-sensitive potassium channels in rat portal vein smooth muscle cells. Zhang HL; Bolton TB Br J Pharmacol; 1996 May; 118(1):105-14. PubMed ID: 8733582 [TBL] [Abstract][Full Text] [Related]
27. The properties of the inward rectifier potassium currents in rabbit coronary arterial smooth muscle cells. Xu X; Rials SJ; Wu Y; Marinchak RA; Kowey PR Pflugers Arch; 1999 Jul; 438(2):187-94. PubMed ID: 10370105 [TBL] [Abstract][Full Text] [Related]
28. The involvement of potassium channels in the action of ciclazindol in rat portal vein. Noack T; Edwards G; Deitmer P; Greengrass P; Morita T; Andersson PO; Criddle D; Wyllie MG; Weston AH Br J Pharmacol; 1992 May; 106(1):17-24. PubMed ID: 1504725 [TBL] [Abstract][Full Text] [Related]
29. Characterization of potassium currents modulated by BRL 38227 in rat portal vein. Noack T; Deitmer P; Edwards G; Weston AH Br J Pharmacol; 1992 Jul; 106(3):717-26. PubMed ID: 1504756 [TBL] [Abstract][Full Text] [Related]
30. Regulation of ATP-sensitive K+ channels by ATP and nucleotide diphosphate in rabbit portal vein. Kamouchi M; Kitamura K Am J Physiol; 1994 May; 266(5 Pt 2):H1687-98. PubMed ID: 8203568 [TBL] [Abstract][Full Text] [Related]
31. Activation by levcromakalim and metabolic inhibition of glibenclamide-sensitive K channels in smooth muscle cells of pig proximal urethra. Teramoto N; Brading AF Br J Pharmacol; 1996 Jun; 118(3):635-42. PubMed ID: 8762088 [TBL] [Abstract][Full Text] [Related]
32. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder. Bonev AD; Nelson MT Am J Physiol; 1993 May; 264(5 Pt 1):C1190-200. PubMed ID: 8498480 [TBL] [Abstract][Full Text] [Related]
33. Inhibitory effects of genistein on ATP-sensitive K+ channels in rabbit portal vein smooth muscle. Ogata R; Kitamura K; Ito Y; Nakano H Br J Pharmacol; 1997 Dec; 122(7):1395-404. PubMed ID: 9421287 [TBL] [Abstract][Full Text] [Related]
34. Inhibition of vascular K(ATP) channels by U-37883A: a comparison with cardiac and skeletal muscle. Wellman GC; Barrett-Jolley R; Köppel H; Everitt D; Quayle JM Br J Pharmacol; 1999 Oct; 128(4):909-16. PubMed ID: 10556925 [TBL] [Abstract][Full Text] [Related]
35. In vitro and in vivo comparison of two K+ channel openers, diazoxide and cromakalim, and their inhibition by glibenclamide. Quast U; Cook NS J Pharmacol Exp Ther; 1989 Jul; 250(1):261-71. PubMed ID: 2501478 [TBL] [Abstract][Full Text] [Related]
36. Anti- and proconvulsive actions of levcromakalim, an opener of ATP-sensitive K+ channel, in the model of hippocampus-generating partial seizures in rats. Katsumori H; Ito Y; Higashida H; Hashii M; Minabe Y Eur J Pharmacol; 1996 Sep; 311(1):37-44. PubMed ID: 8884234 [TBL] [Abstract][Full Text] [Related]
37. Impaired action of levcromakalim on ATP-sensitive K+ channels in mesenteric artery cells from spontaneously hypertensive rats. Ohya Y; Setoguchi M; Fujii K; Nagao T; Abe I; Fujishima M Hypertension; 1996 Jun; 27(6):1234-9. PubMed ID: 8641729 [TBL] [Abstract][Full Text] [Related]
38. Different glibenclamide-sensitivity of ATP-sensitive K+ currents using different patch-clamp recording methods. Teramoto N; Tomoda T; Yunoki T; Ito Y Eur J Pharmacol; 2006 Feb; 531(1-3):34-40. PubMed ID: 16438954 [TBL] [Abstract][Full Text] [Related]
39. Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells. Han X; Light PE; Giles WR; French RJ J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):337-50. PubMed ID: 8821133 [TBL] [Abstract][Full Text] [Related]
40. The lack of a role for potassium channel opening in the action of relaxin in the rat isolated uterus; a comparison with levcromakalim and salbutamol. Hughes SJ; Hollingsworth M Br J Pharmacol; 1996 Apr; 117(7):1435-42. PubMed ID: 8730736 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]