BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 8299150)

  • 41. The enzymes of the classical pentose phosphate pathway display differential activities in procyclic and bloodstream forms of Trypanosoma brucei.
    Cronín CN; Nolan DP; Voorheis HP
    FEBS Lett; 1989 Feb; 244(1):26-30. PubMed ID: 2924907
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Absolute quantitation of glycolytic intermediates reveals thermodynamic shifts in Saccharomyces cerevisiae strains lacking PFK1 or ZWF1 genes.
    Nishino S; Okahashi N; Matsuda F; Shimizu H
    J Biosci Bioeng; 2015 Sep; 120(3):280-6. PubMed ID: 25792186
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genetic improvement of xylose metabolism by enhancing the expression of pentose phosphate pathway genes in Saccharomyces cerevisiae IR-2 for high-temperature ethanol production.
    Kobayashi Y; Sahara T; Suzuki T; Kamachi S; Matsushika A; Hoshino T; Ohgiya S; Kamagata Y; Fujimori KE
    J Ind Microbiol Biotechnol; 2017 Jun; 44(6):879-891. PubMed ID: 28181081
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The pentose shunt in wild-type and glucose-6-phosphate dehydrogenase deficient Drosophila melanogaster.
    Geer BW; Bowman JT; Simmons JR
    J Exp Zool; 1974 Jan; 187(1):77-86. PubMed ID: 4149211
    [No Abstract]   [Full Text] [Related]  

  • 45. Isolation and characterization of the Pichia stipitis transketolase gene and expression in a xylose-utilising Saccharomyces cerevisiae transformant.
    Metzger MH; Hollenberg CP
    Appl Microbiol Biotechnol; 1994 Nov; 42(2-3):319-25. PubMed ID: 7765773
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001.
    Johansson B; Hahn-Hägerdal B
    FEMS Yeast Res; 2002 Aug; 2(3):277-82. PubMed ID: 12702276
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification and characterization of the tktB gene encoding a second transketolase in Escherichia coli K-12.
    Iida A; Teshiba S; Mizobuchi K
    J Bacteriol; 1993 Sep; 175(17):5375-83. PubMed ID: 8396116
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non-oxidative synthesis of pentose 5-phosphate from hexose 6-phosphate and triose phosphate by the L-type pentose pathway.
    Williams JF; Blackmore PF
    Int J Biochem; 1983; 15(6):797-816. PubMed ID: 6862092
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of the structural gene for glucose-6-phosphate dehydrogenase in yeast. Inactivation leads to a nutritional requirement for organic sulfur.
    Thomas D; Cherest H; Surdin-Kerjan Y
    EMBO J; 1991 Mar; 10(3):547-53. PubMed ID: 2001672
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The pentose phosphate pathway of glucose metabolism. Hormonal and dietary control of the oxidative nd non-oxidative reactions and related enzymes of the cycle in adipose tissue.
    Gumaa KA; Novello F; McLean P
    Biochem J; 1969 Sep; 114(2):253-64. PubMed ID: 5810081
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant.
    Boles E; Lehnert W; Zimmermann FK
    Eur J Biochem; 1993 Oct; 217(1):469-77. PubMed ID: 7901008
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Untargeted metabolomics as an unbiased approach to the diagnosis of inborn errors of metabolism of the non-oxidative branch of the pentose phosphate pathway.
    Shayota BJ; Donti TR; Xiao J; Gijavanekar C; Kennedy AD; Hubert L; Rodan L; Vanderpluym C; Nowak C; Bjornsson HT; Ganetzky R; Berry GT; Pappan KL; Sutton VR; Sun Q; Elsea SH
    Mol Genet Metab; 2020; 131(1-2):147-154. PubMed ID: 32828637
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Formation of a pentose phosphate cycle metabolite, erythrose-4-phosphate, from initial compounds of glycolysis by transketolase from the rat liver].
    Stepanova NG; Demcheva MV
    Biokhimiia; 1987 Nov; 52(11):1907-13. PubMed ID: 3440115
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The pentose cycle. Control and essential function in HeLa cell nucleic acid synthesis.
    Reitzer LJ; Wice BM; Kennell D
    J Biol Chem; 1980 Jun; 255(12):5616-26. PubMed ID: 6445904
    [No Abstract]   [Full Text] [Related]  

  • 55. [Activity of pentose phosphate pathway enzymes in alkane-oxidizing yeast cells].
    Glazunova LM; Muntian LN; Finogenova TV; Lozinov AB
    Mikrobiologiia; 1975; 44(1):21-7. PubMed ID: 1160634
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functional overexpression of genes involved in erythritol synthesis in the yeast
    Mirończuk AM; Biegalska A; Dobrowolski A
    Biotechnol Biofuels; 2017; 10():77. PubMed ID: 28352301
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibition of IRE1 modifies hypoxic regulation of G6PD, GPI, TKT, TALDO1, PGLS and RPIA genes expression in U87 glioma cells.
    Minchenko OH; Garmash IA; Minchenko DO; Kuznetsova AY; Ratushna OO
    Ukr Biochem J; 2017; 89(1):38-49. PubMed ID: 29236388
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deletion of the glucose-6-phosphate dehydrogenase gene KlZWF1 affects both fermentative and respiratory metabolism in Kluyveromyces lactis.
    Saliola M; Scappucci G; De Maria I; Lodi T; Mancini P; Falcone C
    Eukaryot Cell; 2007 Jan; 6(1):19-27. PubMed ID: 17085636
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exclusive expression of transketolase in the vanadocytes of the vanadium-rich ascidian, Ascidia sydneiensis samea.
    Ueki T; Uyama T; Yamamoto K; Kanamori K; Michibata H
    Biochim Biophys Acta; 2000 Nov; 1494(1-2):83-90. PubMed ID: 11072071
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Certain molecular-kinetic characteristics of pentose phosphate shunt enzymes].
    Kudriavtseva GV
    Usp Sovrem Biol; 1980; 89(1):74-89. PubMed ID: 6994388
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.