These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 8299160)

  • 1. psbD sequences of Bumilleriopsis filiformis (Heterokontophyta, Xanthophyceae) and Porphyridium purpureum (Rhodophyta, Bangiophycidae): evidence for polyphyletic origins of plastids.
    Scherer S; Lechner S; Böger P
    Curr Genet; 1993 Nov; 24(5):437-42. PubMed ID: 8299160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for multiple xenogenous origins of plastids: comparison of psbA-genes with a xanthophyte sequence.
    Scherer S; Herrmann G; Hirschberg J; Böger P
    Curr Genet; 1991 Jun; 19(6):503-7. PubMed ID: 1879002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural similarities between psbA genes from red and brown algae.
    Winhauer T; Jäger S; Valentin K; Zetsche K
    Curr Genet; 1991 Jul; 20(1-2):177-80. PubMed ID: 1934114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the Rubisco operon from the unicellular red alga Cyanidium caldarium: evidence for a polyphyletic origin of the plastids.
    Valentin K; Zetsche K
    Mol Gen Genet; 1990 Jul; 222(2-3):425-30. PubMed ID: 2274041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogeny of the Bangiophycidae (Rhodophyta) and the secondary endosymbiotic origin of algal plastids.
    Oliveira MC; Bhattacharya D
    Am J Bot; 2000 Apr; 87(4):482-92. PubMed ID: 10766719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rubisco genes indicate a close phylogenetic relation between the plastids of Chromophyta and Rhodophyta.
    Valentin K; Zetsche K
    Plant Mol Biol; 1990 Oct; 15(4):575-84. PubMed ID: 2102375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosomal DNA phylogeny of the Bangiophycidae (Rhodophyta) and the origin of secondary plastids.
    Müller KM; Oliveira MC; Sheath RG; Bhattacharya D
    Am J Bot; 2001 Aug; 88(8):1390-400. PubMed ID: 21669670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 16 kb small single-copy region separates the plastid DNA inverted repeat of the unicellular red alga Cyanidium caldarium: physical mapping of the IR-flanking regions and nucleotide sequences of the psbD-psbC, rps16, 5S rRNA and rpl21 genes.
    Maid U; Zetsche K
    Plant Mol Biol; 1992 Sep; 19(6):1001-10. PubMed ID: 1511125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the complete plastid genome of the unicellular red alga Porphyridium purpureum.
    Tajima N; Sato S; Maruyama F; Kurokawa K; Ohta H; Tabata S; Sekine K; Moriyama T; Sato N
    J Plant Res; 2014 May; 127(3):389-97. PubMed ID: 24595640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Photosystem II of rye. Nucleotide sequence of psbD, psbI genes encoding reaction center proteins].
    Kolosov VL; Bukharov AA; Zolotarev AS
    Bioorg Khim; 1991 Apr; 17(4):448-55. PubMed ID: 1888340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological convergence characterizes the evolution of Xanthophyceae (Heterokontophyta): evidence from nuclear SSU rDNA and plastidial rbcL genes.
    Negrisolo E; Maistro S; Incarbone M; Moro I; Dalla Valle L; Broady PA; Andreoli C
    Mol Phylogenet Evol; 2004 Oct; 33(1):156-70. PubMed ID: 15324845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL.
    Freshwater DW; Fredericq S; Butler BS; Hommersand MH; Chase MW
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7281-5. PubMed ID: 8041781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Twenty-fold difference in evolutionary rates between the mitochondrial and plastid genomes of species with secondary red plastids.
    Smith DR; Keeling PJ
    J Eukaryot Microbiol; 2012; 59(2):181-4. PubMed ID: 22236077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The extrinsic proteins of photosystem II in photosynthetic organisms: distribution, properties and evolutionary implications.
    Fairweather MS; Packer JC; Howe CJ
    Biochem Biophys Res Commun; 1994 Dec; 205(3):1497-502. PubMed ID: 7811228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a sequence-specific DNA binding factor required for transcription of the barley chloroplast blue light-responsive psbD-psbC promoter.
    Kim M; Mullet JE
    Plant Cell; 1995 Sep; 7(9):1445-57. PubMed ID: 8589628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The genes of both subunits of ribulose-1,5-bisphosphate carboxylase constitute an operon on the plastome of a red alga.
    Valentin K; Zetsche K
    Curr Genet; 1989 Sep; 16(3):203-9. PubMed ID: 2598276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plastid genomes of the Rhodophyta and Chromophyta constitute a distinct lineage which differs from that of the Chlorophyta and have a composite phylogenetic origin, perhaps like that of the Euglenophyta.
    Markowicz Y; Loiseaux-de Goër S
    Curr Genet; 1991 Nov; 20(5):427-30. PubMed ID: 1807834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LhcaR1 of the red alga Porphyridium cruentum encodes a polypeptide of the LHCI complex with seven potential chlorophyll a-binding residues that are conserved in most LHCs.
    Tan S; Cunningham FX; Gantt E
    Plant Mol Biol; 1997 Jan; 33(1):157-67. PubMed ID: 9037167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expansion of phycobilisome linker gene families in mesophilic red algae.
    Lee J; Kim D; Bhattacharya D; Yoon HS
    Nat Commun; 2019 Oct; 10(1):4823. PubMed ID: 31645564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel light-regulated promoter is conserved in cereal and dicot chloroplasts.
    Christopher DA; Kim M; Mullet JE
    Plant Cell; 1992 Jul; 4(7):785-98. PubMed ID: 1392595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.