These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Poly(acrylic acid) modified calcium phosphate cements: the effect of the composition of the cement powder and of the molecular weight and concentration of the polymeric acid. Majekodunmi AO; Deb S J Mater Sci Mater Med; 2007 Sep; 18(9):1883-8. PubMed ID: 17522964 [TBL] [Abstract][Full Text] [Related]
5. Mechanical properties of calcium phosphate based dental filling and regeneration materials. Lee YK; Lim BS; Kim CW J Oral Rehabil; 2003 Apr; 30(4):418-25. PubMed ID: 12631167 [TBL] [Abstract][Full Text] [Related]
6. Reaction of calcium phosphate cements with different amounts of tetracalcium phosphate and dicalcium phosphate anhydrous. Ishikawa K; Takagi S; Chow LC; Suzuki K J Biomed Mater Res; 1999 Sep; 46(4):504-10. PubMed ID: 10398011 [TBL] [Abstract][Full Text] [Related]
7. Brittle and ductile adjustable cement derived from calcium phosphate cement/polyacrylic acid composites. Chen WC; Ju CP; Wang JC; Hung CC; Chern Lin JH Dent Mater; 2008 Dec; 24(12):1616-22. PubMed ID: 18502499 [TBL] [Abstract][Full Text] [Related]
8. Setting reactions and compressive strengths of calcium phosphate cements. Fukase Y; Eanes ED; Takagi S; Chow LC; Brown WE J Dent Res; 1990 Dec; 69(12):1852-6. PubMed ID: 2250090 [TBL] [Abstract][Full Text] [Related]
9. Transmission electron microscopic study on setting mechanism of tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cement. Chen WC; Lin JH; Ju CP J Biomed Mater Res A; 2003 Mar; 64(4):664-71. PubMed ID: 12601778 [TBL] [Abstract][Full Text] [Related]
10. Formation of hydroxyapatite in new calcium phosphate cements. Takagi S; Chow LC; Ishikawa K Biomaterials; 1998 Sep; 19(17):1593-9. PubMed ID: 9830985 [TBL] [Abstract][Full Text] [Related]
12. Formation of hydroxyapatite in hydrogels from tetracalcium phosphate/dicalcium phosphate mixtures. Sugawara A; Antonucci JM; Takagi S; Chow LC; Ohashi M J Nihon Univ Sch Dent; 1989 Mar; 31(1):372-81. PubMed ID: 2732787 [TBL] [Abstract][Full Text] [Related]
13. Development of calcium phosphate/sulfate biphasic cement for vital pulp therapy. Chang KC; Chang CC; Chen WT; Hsu CK; Lin FH; Lin CP Dent Mater; 2014 Dec; 30(12):e362-70. PubMed ID: 25189109 [TBL] [Abstract][Full Text] [Related]
14. Variation in structure and properties of a non-dispersive TTCP/DCPA-derived CPC immersed in Hanks' solution. Chen WC; Ju CP; Chern Lin JH J Oral Rehabil; 2007 Jul; 34(7):541-51. PubMed ID: 17559622 [TBL] [Abstract][Full Text] [Related]
15. Application of impedance spectroscopy to evaluate the effect of different setting accelerators on the developed microstructures of calcium phosphate cements. Romeo HE; Bueno PR; Fanovich MA J Mater Sci Mater Med; 2009 Aug; 20(8):1619-27. PubMed ID: 19347256 [TBL] [Abstract][Full Text] [Related]
16. Transforming growth factor-beta1 incorporation in a calcium phosphate bone cement: material properties and release characteristics. Blom EJ; Klein-Nulend J; Wolke JG; van Waas MA; Driessens FC; Burger EH J Biomed Mater Res; 2002 Feb; 59(2):265-72. PubMed ID: 11745562 [TBL] [Abstract][Full Text] [Related]