BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8300573)

  • 41. Transcriptional regulation of nicotinic acetylcholine receptor genes: identification of control elements of a gamma-subunit gene.
    Gardner PD; Heinemann S; Patrick J
    Brain Res; 1987 Dec; 427(1):69-76. PubMed ID: 3480767
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regeneration of transgenic skeletal muscles with altered timing of expression of the basic helix-loop-helix muscle regulatory factor MRF4.
    Pavlath GK; Dominov JA; Kegley KM; Miller JB
    Am J Pathol; 2003 May; 162(5):1685-91. PubMed ID: 12707053
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell type- and differentiation-dependent expression from the mouse acetylcholine receptor epsilon-subunit promoter.
    Sunyer T; Merlie JP
    J Neurosci Res; 1993 Oct; 36(2):224-34. PubMed ID: 8263973
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies.
    Zhang W; Behringer RR; Olson EN
    Genes Dev; 1995 Jun; 9(11):1388-99. PubMed ID: 7797078
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differential activation of the SMalphaA promoter in smooth vs. skeletal muscle cells by bHLH factors.
    Johnson AD; Owens GK
    Am J Physiol; 1999 Jun; 276(6):C1420-31. PubMed ID: 10362606
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transcriptional control of muscle plasticity: differential regulation of troponin I genes by electrical activity.
    Calvo S; Stauffer J; Nakayama M; Buonanno A
    Dev Genet; 1996; 19(2):169-81. PubMed ID: 8900050
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Physical interaction between the mitogen-responsive serum response factor and myogenic basic-helix-loop-helix proteins.
    Groisman R; Masutani H; Leibovitch MP; Robin P; Soudant I; Trouche D; Harel-Bellan A
    J Biol Chem; 1996 Mar; 271(9):5258-64. PubMed ID: 8617811
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphorylation of myogenin in chick myotubes: regulation by electrical activity and by protein kinase C. Implications for acetylcholine receptor gene expression.
    Mendelzon D; Changeux JP; Nghiêm HO
    Biochemistry; 1994 Mar; 33(9):2568-75. PubMed ID: 8117718
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Control of myogenic factor genes by the membrane depolarization/protein kinase C cascade in chick skeletal muscle.
    Huang CF; Neville CM; Schmidt J
    FEBS Lett; 1993 Mar; 319(1-2):21-5. PubMed ID: 8384125
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The basic helix-loop-helix transcription factors myogenin and Id2 mediate specific induction of caveolin-3 gene expression during embryonic development.
    Biederer CH; Ries SJ; Moser M; Florio M; Israel MA; McCormick F; Buettner R
    J Biol Chem; 2000 Aug; 275(34):26245-51. PubMed ID: 10835421
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Clenbuterol mimics effects of innervation on myogenic regulatory factor expression.
    Maltin CA; Delday MI; Campbell GP; Hesketh JE
    Am J Physiol; 1993 Jul; 265(1 Pt 1):E176-8. PubMed ID: 8393291
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced expression of myogenic regulatory genes in aging skeletal muscle.
    Musarò A; Cusella De Angelis MG; Germani A; Ciccarelli C; Molinaro M; Zani BM
    Exp Cell Res; 1995 Nov; 221(1):241-8. PubMed ID: 7589251
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of binding and activating functions of the chick muscle acetylcholine receptor gamma-subunit upstream sequence.
    Jia HT; Tsay HJ; Schmidt J
    Cell Mol Neurobiol; 1992 Jun; 12(3):241-58. PubMed ID: 1330309
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid inhibition of myogenin-driven acetylcholine receptor subunit gene transcription.
    Huang CF; Lee YS; Schmidt MM; Schmidt J
    EMBO J; 1994 Feb; 13(3):634-40. PubMed ID: 8313908
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The MyoD family of myogenic factors is regulated by electrical activity: isolation and characterization of a mouse Myf-5 cDNA.
    Buonanno A; Apone L; Morasso MI; Beers R; Brenner HR; Eftimie R
    Nucleic Acids Res; 1992 Feb; 20(3):539-44. PubMed ID: 1741288
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Muscle acetylcholine receptor biosynthesis. Regulation by transcript availability.
    Evans S; Goldman D; Heinemann S; Patrick J
    J Biol Chem; 1987 Apr; 262(10):4911-6. PubMed ID: 2435720
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CaM kinase II-dependent phosphorylation of myogenin contributes to activity-dependent suppression of nAChR gene expression in developing rat myotubes.
    Tang H; Macpherson P; Argetsinger LS; Cieslak D; Suhr ST; Carter-Su C; Goldman D
    Cell Signal; 2004 May; 16(5):551-63. PubMed ID: 14751541
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Upstream region of the myogenin gene confers transcriptional activation in muscle cell lineages during mouse embryogenesis.
    Fujisawa-Sehara A; Hanaoka K; Hayasaka M; Hiromasa-Yagami T; Nabeshima Y
    Biochem Biophys Res Commun; 1993 Mar; 191(2):351-6. PubMed ID: 8384837
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of acetylcholine receptor gene expression in rats treated with alpha-bungarotoxin.
    Asher O; Provenzano C; Fuchs S
    FEBS Lett; 1991 May; 282(2):242-6. PubMed ID: 1645280
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differential trans-activation of muscle-specific regulatory elements including the mysosin light chain box by chicken MyoD, myogenin, and MRF4.
    Fujisawa-Sehara A; Nabeshima Y; Komiya T; Uetsuki T; Asakura A; Nabeshima Y
    J Biol Chem; 1992 May; 267(14):10031-8. PubMed ID: 1374396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.