BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 8300849)

  • 1. Fish muscle structure: fibre types in flatfish and mullet fin muscles using histochemistry and antimyosin antibody labelling.
    Chayen NE; Rowlerson AM; Squire JM
    J Muscle Res Cell Motil; 1993 Oct; 14(5):533-42. PubMed ID: 8300849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative histochemistry of a flatfish fin muscle and of other vertebrate muscles used for ultrastructural studies.
    Chayen N; Freundlich A; Squire JM
    J Muscle Res Cell Motil; 1987 Aug; 8(4):358-71. PubMed ID: 2958501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of myosins present in the lateral muscle of some fish: species variations in myosin isoforms and their distribution in red, pink and white muscle.
    Rowlerson A; Scapolo PA; Mascarello F; Carpenè E; Veggetti A
    J Muscle Res Cell Motil; 1985 Oct; 6(5):601-40. PubMed ID: 3905858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of human oro-facial and masticatory muscles with respect to fibre types, myosins and capillaries. Morphological, enzyme-histochemical, immuno-histochemical and biochemical investigations.
    Stål P
    Swed Dent J Suppl; 1994; 98():1-55. PubMed ID: 7801228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The multiplicity of combinations of myosin light chains and heavy chains in histochemically typed single fibres. Rabbit tibialis anterior muscle.
    Staron RS; Pette D
    Biochem J; 1987 May; 243(3):695-9. PubMed ID: 2959268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic capacity and myosin expression in single muscle fibres of the garter snake.
    Wilkinson RS; Nemeth PM; Rosser BW; Sweeney HL
    J Physiol; 1991; 440():113-29. PubMed ID: 1804957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation and growth of muscle in the fish Sparus aurata (L): I. Myosin expression and organization of fibre types in lateral muscle from hatching to adult.
    Mascarello F; Rowlerson A; Radaelli G; Scapolo PA; Veggetti A
    J Muscle Res Cell Motil; 1995 Jun; 16(3):213-22. PubMed ID: 7559994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Crystalline" myosin cross-bridge array in relaxed bony fish muscle. Low-angle x-ray diffraction from plaice fin muscle and its interpretation.
    Harford J; Squire J
    Biophys J; 1986 Jul; 50(1):145-55. PubMed ID: 3730499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneity and distribution of fast myosin heavy chains in some adult vertebrate skeletal muscles.
    Williams K; Dhoot GK
    Histochemistry; 1992 May; 97(4):361-70. PubMed ID: 1618651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymorphism of myofibrillar proteins of rabbit skeletal-muscle fibres. An electrophoretic study of single fibres.
    Salviati G; Betto R; Danieli Betto D
    Biochem J; 1982 Nov; 207(2):261-72. PubMed ID: 6186242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity in expression of myosin heavy chain isoforms and M-band proteins in rat muscle spindles.
    Pedrosa F; Butler-Browne GS; Dhoot GK; Fischman DA; Thornell LE
    Histochemistry; 1989; 92(3):185-94. PubMed ID: 2476423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural identification of type 1 fibres in human skeletal muscle. Immunogold labelling of thin cryosections with a monoclonal antibody against slow myosin.
    Semper AE; Fitzsimons RB; Shotton DM
    J Neurol Sci; 1988 Jan; 83(1):93-108. PubMed ID: 3279166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological properties of three muscle fibre types controlling dorsal fin movements in a flatfish, Citharichthys sordidus.
    Gilly WF; Aladjem E
    J Muscle Res Cell Motil; 1987 Oct; 8(5):407-17. PubMed ID: 3429642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The multiplicity of combinations of myosin light chains and heavy chains in histochemically typed single fibres. Rabbit soleus muscle.
    Staron RS; Pette D
    Biochem J; 1987 May; 243(3):687-93. PubMed ID: 2959267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast-to-slow transition in myosin heavy chain expression of rabbit muscle fibres induced by chronic low-frequency stimulation.
    Aigner S; Pette D
    Symp Soc Exp Biol; 1992; 46():311-7. PubMed ID: 1341044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous distribution of myosin in human masticatory muscle fibres as shown by immunocytochemistry.
    Thornell LE; Billeter R; Eriksson PO; Ringqvist M
    Arch Oral Biol; 1984; 29(1):1-5. PubMed ID: 6229237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles.
    Larsson L; Moss RL
    J Physiol; 1993 Dec; 472():595-614. PubMed ID: 8145163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of an alpha-cardiac like myosin heavy chain in diaphragm, chronically stimulated, and denervated fast-twitch muscles of rabbit.
    Hämäläinen N; Pette D
    J Muscle Res Cell Motil; 1997 Aug; 18(4):401-11. PubMed ID: 9276334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variations in contractile properties of rabbit single muscle fibres in relation to troponin T isoforms and myosin light chains.
    Greaser ML; Moss RL; Reiser PJ
    J Physiol; 1988 Dec; 406():85-98. PubMed ID: 3254423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental transitions of myosin isoforms and organisation of the lateral muscle in the teleost Dicentrarchus labrax (L.).
    Scapolo PA; Veggetti A; Mascarello F; Romanello MG
    Anat Embryol (Berl); 1988; 178(4):287-95. PubMed ID: 2972229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.