These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8300850)

  • 1. Examined the activation of central myofibrils during muscle fatigue caused by repeated short tetani.
    Allen D; Duty S; Westerblad H
    J Muscle Res Cell Motil; 1993 Oct; 14(5):543-5. PubMed ID: 8300850
    [No Abstract]   [Full Text] [Related]  

  • 2. Intracellular calcium and tension during fatigue in isolated single muscle fibres from Xenopus laevis.
    Allen DG; Lee JA; Westerblad H
    J Physiol; 1989 Aug; 415():433-58. PubMed ID: 2517988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in tetanic and resting [Ca2+]i during fatigue and recovery of single muscle fibres from Xenopus laevis.
    Lee JA; Westerblad H; Allen DG
    J Physiol; 1991 Feb; 433():307-26. PubMed ID: 1841942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial gradients of intracellular calcium in skeletal muscle during fatigue.
    Westerblad H; Lee JA; Lamb AG; Bolsover SR; Allen DG
    Pflugers Arch; 1990 Mar; 415(6):734-40. PubMed ID: 2336350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force relaxation, labile heat and parvalbumin content of skeletal muscle fibres of Xenopus laevis.
    Lännergren J; Elzinga G; Stienen GJ
    J Physiol; 1993 Apr; 463():123-40. PubMed ID: 8246178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased Ca2-buffering contributes to slowing of relaxation in fatigued Xenopus muscle fibres.
    Westerblad H; Lännergren J
    Acta Physiol Scand; 1990 May; 139(1):243-4. PubMed ID: 2356753
    [No Abstract]   [Full Text] [Related]  

  • 7. Recovery of fatigued Xenopus muscle fibres is markedly affected by the extracellular tonicity.
    Westerblad H; Lännergren J
    J Muscle Res Cell Motil; 1990 Apr; 11(2):147-53. PubMed ID: 2351752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle activation: the current status.
    Podolsky RJ
    Fed Proc; 1975 Apr; 34(5):1374-8. PubMed ID: 1168158
    [No Abstract]   [Full Text] [Related]  

  • 9. The role of sarcoplasmic reticulum in relaxation of mouse muscle; effects of 2,5-di(tert-butyl)-1,4-benzohydroquinone.
    Westerblad H; Allen DG
    J Physiol; 1994 Jan; 474(2):291-301. PubMed ID: 8006816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue mechanisms in single Xenopus muscle fibers of different types.
    Lännergren J; Westerblad H
    Prog Clin Biol Res; 1989; 315():99-107. PubMed ID: 2798524
    [No Abstract]   [Full Text] [Related]  

  • 11. The duty cycle of single muscle fibers from Xenopus laevis.
    van der Laarse WJ; Diegenbach PC; Elzinga G
    Prog Clin Biol Res; 1989; 315():87-97. PubMed ID: 2798523
    [No Abstract]   [Full Text] [Related]  

  • 12. ATP formation and ATP hydrolysis during fatiguing, intermittent stimulation of different types of single muscle fibres from Xenopus laevis.
    Nagesser AS; Van der Laarse WJ; Elzinga G
    J Muscle Res Cell Motil; 1993 Dec; 14(6):608-18. PubMed ID: 8126221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CONTRACTION IN INTRAFUSAL MUSCLE FIBRES OF XENOPUS LAEVIS FOLLOWING STIMULATION OF THEIR MOTOR NERVES.
    SMITH RS
    Acta Physiol Scand; 1964 Nov; 62():195-208. PubMed ID: 14236549
    [No Abstract]   [Full Text] [Related]  

  • 14. The contribution of [Ca2+]i to the slowing of relaxation in fatigued single fibres from mouse skeletal muscle.
    Westerblad H; Allen DG
    J Physiol; 1993 Aug; 468():729-40. PubMed ID: 8254532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes of the force-velocity relation, isometric tension and relaxation rate during fatigue in intact, single fibres of Xenopus skeletal muscle.
    Westerblad H; Lännergren J
    J Muscle Res Cell Motil; 1994 Jun; 15(3):287-98. PubMed ID: 7929794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slowing of relaxation and [Ca2+]i during prolonged tetanic stimulation of single fibres from Xenopus skeletal muscle.
    Westerblad H; Allen DG
    J Physiol; 1996 May; 492 ( Pt 3)(Pt 3):723-36. PubMed ID: 8734985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of excitation-contraction coupling in muscle fatigue.
    Allen DG; Westerblad H; Lee JA; Lännergren J
    Sports Med; 1992 Feb; 13(2):116-26. PubMed ID: 1313991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myofibrillar fatigue versus failure of activation during repetitive stimulation of frog muscle fibres.
    Edman KA; Lou F
    J Physiol; 1992 Nov; 457():655-73. PubMed ID: 1297847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers.
    Westerblad H; Allen DG
    J Gen Physiol; 1991 Sep; 98(3):615-35. PubMed ID: 1761971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular calcium concentration during low-frequency fatigue in isolated single fibers of mouse skeletal muscle.
    Westerblad H; Duty S; Allen DG
    J Appl Physiol (1985); 1993 Jul; 75(1):382-8. PubMed ID: 8397180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.