These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8300954)

  • 1. Self-suppression in a locally active nonlinear model of the cochlea: a quasilinear approach.
    Kanis LJ; de Boer E
    J Acoust Soc Am; 1993 Dec; 94(6):3199-206. PubMed ID: 8300954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysics of the cochlea. II: Stationary nonlinear phenomenology.
    Nobili R; Mammano F
    J Acoust Soc Am; 1996 Apr; 99(4 Pt 1):2244-55. PubMed ID: 8730071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency tuning of mechanical responses in the mammalian cochlea.
    Robles L; Alcayaga C
    Biol Res; 1996; 29(3):325-31. PubMed ID: 9278704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracochlear pressure and organ of corti impedance from a linear active three-dimensional model.
    Yoon YJ; Puria S; Steele CR
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):365-72. PubMed ID: 17065831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea.
    Meaud J; Grosh K
    Biophys J; 2012 Mar; 102(6):1237-46. PubMed ID: 22455906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-tone suppression in a locally active nonlinear model of the cochlea.
    Kanis LJ; de Boer E
    J Acoust Soc Am; 1994 Oct; 96(4):2156-65. PubMed ID: 7963029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanical waveform of the basilar membrane. III. Intensity effects.
    de Boer E; Nuttall AL
    J Acoust Soc Am; 2000 Mar; 107(3):1497-507. PubMed ID: 10738804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-tone suppression of inner hair cell and basilar membrane responses in the guinea pig.
    Nuttall AL; Dolan DF
    J Acoust Soc Am; 1993 Jan; 93(1):390-400. PubMed ID: 8423256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-tone distortion in intracochlear pressure.
    Dong W; Olson ES
    J Acoust Soc Am; 2005 May; 117(5):2999-3015. PubMed ID: 15957770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distortion product otoacoustic emissions in an active nonlinear model of the cochlea.
    Fukazawa T; Tanaka Y
    Hear Res; 1994 Dec; 81(1-2):42-8. PubMed ID: 7737928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Level dependence of the nonlinear-distortion component of distortion-product otoacoustic emissions in humans.
    Zelle D; Thiericke JP; Dalhoff E; Gummer AW
    J Acoust Soc Am; 2015 Dec; 138(6):3475-90. PubMed ID: 26723305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracochlear pressure measurements related to cochlear tuning.
    Olson ES
    J Acoust Soc Am; 2001 Jul; 110(1):349-67. PubMed ID: 11508960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-tone distortion in reticular lamina vibration of the living cochlea.
    Ren T; He W
    Commun Biol; 2020 Jan; 3(1):35. PubMed ID: 31965040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of altering organ of Corti on cochlear distortion products f2 - f1 and 2f1 - f2.
    Siegel JH; Kim DO; Molnar CE
    J Neurophysiol; 1982 Feb; 47(2):303-28. PubMed ID: 7062102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On equivalence of locally active models of the cochlea.
    de Boer E
    J Acoust Soc Am; 1995 Sep; 98(3):1400-9. PubMed ID: 7560509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes.
    Cormack J; Liu Y; Nam JH; Gracewski SM
    J Acoust Soc Am; 2015 Mar; 137(3):1117-25. PubMed ID: 25786927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Hypothesis on the Frequency Discrimination of the Cochlea.
    Bulut E; Uzun C; Öztürk L; Turan P; Kanter M; Arbak S
    J Int Adv Otol; 2017 Aug; 13(2):204-210. PubMed ID: 28414275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biophysics of the cochlea: linear approximation.
    Mammano F; Nobili R
    J Acoust Soc Am; 1993 Jun; 93(6):3320-32. PubMed ID: 8326060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further tests of the local nonlinear interaction-based mechanism for simultaneous suppression of tone burst-evoked otoacoustic emissions.
    Killan EC; Lutman ME; Thyer NJ
    Hear Res; 2015 Jan; 319():12-24. PubMed ID: 25446244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.