These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 8301226)
1. Oxidation of low density lipoprotein by thiols: superoxide-dependent and -independent mechanisms. Heinecke JW; Kawamura M; Suzuki L; Chait A J Lipid Res; 1993 Dec; 34(12):2051-61. PubMed ID: 8301226 [TBL] [Abstract][Full Text] [Related]
2. The role of sulfur-containing amino acids in superoxide production and modification of low density lipoprotein by arterial smooth muscle cells. Heinecke JW; Rosen H; Suzuki LA; Chait A J Biol Chem; 1987 Jul; 262(21):10098-103. PubMed ID: 3038867 [TBL] [Abstract][Full Text] [Related]
3. Physiological thiol compounds exert pro- and anti-oxidant effects, respectively, on iron- and copper-dependent oxidation of human low-density lipoprotein. Lynch SM; Frei B Biochim Biophys Acta; 1997 Apr; 1345(2):215-21. PubMed ID: 9106501 [TBL] [Abstract][Full Text] [Related]
4. Structural requirements for oxidation of low-density lipoprotein by thiols. Wood JL; Graham A FEBS Lett; 1995 Jun; 366(1):75-80. PubMed ID: 7789522 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of copper- and iron-dependent oxidative modification of human low density lipoprotein. Lynch SM; Frei B J Lipid Res; 1993 Oct; 34(10):1745-53. PubMed ID: 8245725 [TBL] [Abstract][Full Text] [Related]
6. Plasma thiols inhibit hemin-dependent oxidation of human low-density lipoprotein. Lynch SM; Campione AL; Moore MK Biochim Biophys Acta; 2000 May; 1485(1):11-22. PubMed ID: 10802245 [TBL] [Abstract][Full Text] [Related]
7. Cellular oxidation of low density lipoprotein is caused by thiol production in media containing transition metal ions. Sparrow CP; Olszewski J J Lipid Res; 1993 Jul; 34(7):1219-28. PubMed ID: 8103788 [TBL] [Abstract][Full Text] [Related]
8. Human (THP-1) macrophages oxidize LDL by a thiol-dependent mechanism. Graham A; Wood JL; O'Leary VJ; Stone D Free Radic Res; 1996 Aug; 25(2):181-92. PubMed ID: 8885336 [TBL] [Abstract][Full Text] [Related]
9. Human (THP-1) macrophages oxidize LDL by a thiol-dependent mechanism. Graham A; Wood JL; O'Leary VJ; Stone D Free Radic Res; 1994 Oct; 21(5):295-308. PubMed ID: 7842139 [TBL] [Abstract][Full Text] [Related]
10. Superoxide anion participation in human monocyte-mediated oxidation of low-density lipoprotein and conversion of low-density lipoprotein to a cytotoxin. Cathcart MK; McNally AK; Morel DW; Chisolm GM J Immunol; 1989 Mar; 142(6):1963-9. PubMed ID: 2537865 [TBL] [Abstract][Full Text] [Related]
11. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin. Burkitt MJ Arch Biochem Biophys; 2001 Oct; 394(1):117-35. PubMed ID: 11566034 [TBL] [Abstract][Full Text] [Related]
12. Thiol chelation of Cu2+ by dihydrolipoic acid prevents human low density lipoprotein peroxidation. Lodge JK; Traber MG; Packer L Free Radic Biol Med; 1998 Aug; 25(3):287-97. PubMed ID: 9680174 [TBL] [Abstract][Full Text] [Related]
13. Ceruloplasmin enhances smooth muscle cell- and endothelial cell-mediated low density lipoprotein oxidation by a superoxide-dependent mechanism. Mukhopadhyay CK; Ehrenwald E; Fox PL J Biol Chem; 1996 Jun; 271(25):14773-8. PubMed ID: 8663020 [TBL] [Abstract][Full Text] [Related]
14. Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells. Heinecke JW; Baker L; Rosen H; Chait A J Clin Invest; 1986 Mar; 77(3):757-61. PubMed ID: 3005364 [TBL] [Abstract][Full Text] [Related]
15. Role of superoxide in endothelial-cell modification of low-density lipoproteins. Steinbrecher UP Biochim Biophys Acta; 1988 Mar; 959(1):20-30. PubMed ID: 2830901 [TBL] [Abstract][Full Text] [Related]
16. Does superoxide radical have a role in macrophage-mediated oxidative modification of LDL? Jessup W; Simpson JA; Dean RT Atherosclerosis; 1993 Feb; 99(1):107-20. PubMed ID: 8384855 [TBL] [Abstract][Full Text] [Related]
17. Recognition of oxidized low density lipoprotein by the scavenger receptor of macrophages results from derivatization of apolipoprotein B by products of fatty acid peroxidation. Steinbrecher UP; Lougheed M; Kwan WC; Dirks M J Biol Chem; 1989 Sep; 264(26):15216-23. PubMed ID: 2768257 [TBL] [Abstract][Full Text] [Related]
18. Ascorbic acid oxidation product(s) protect human low density lipoprotein against atherogenic modification. Anti- rather than prooxidant activity of vitamin C in the presence of transition metal ions. Retsky KL; Freeman MW; Frei B J Biol Chem; 1993 Jan; 268(2):1304-9. PubMed ID: 8419332 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms by which cysteine can inhibit or promote the oxidation of low density lipoprotein by copper. Patterson RA; Lamb DJ; Leake DS Atherosclerosis; 2003 Jul; 169(1):87-94. PubMed ID: 12860254 [TBL] [Abstract][Full Text] [Related]
20. Contribution of superoxide to reduced antioxidant activity of glycoxidative serum albumin. Sakata N; Moh A; Takebayashi S Heart Vessels; 2002 Nov; 17(1):22-9. PubMed ID: 12434198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]