These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 8302029)

  • 1. Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls.
    Hayashi K
    J Biomech Eng; 1993 Nov; 115(4B):481-8. PubMed ID: 8302029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of the arterial wall: review and directions.
    Humphrey JD
    Crit Rev Biomed Eng; 1995; 23(1-2):1-162. PubMed ID: 8665806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residual strains in conduit arteries.
    Rachev A; Greenwald SE
    J Biomech; 2003 May; 36(5):661-70. PubMed ID: 12694996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A description of arterial wall mechanics using limiting chain extensibility constitutive models.
    Horgan CO; Saccomandi G
    Biomech Model Mechanobiol; 2003 Apr; 1(4):251-66. PubMed ID: 14586694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries.
    Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M
    Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age related constitutive laws and stress distribution in human main coronary arteries with reference to residual strain.
    Valenta J; Vitek K; Cihak R; Konvickova S; Sochor M; Horny L
    Biomed Mater Eng; 2002; 12(2):121-34. PubMed ID: 12122236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the three-dimensional residual stresses on the mechanical properties of arterial walls.
    Zheng X; Ren J
    J Theor Biol; 2016 Mar; 393():118-26. PubMed ID: 26780646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and residual stresses of arterial walls.
    Ren JS
    J Theor Biol; 2013 Nov; 337():80-8. PubMed ID: 23968891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power spectral estimation of high-harmonics in echoes of wall resonances to improve resolution in non-invasive measurements of wall mechanical properties in rubber tube and ex-vivo artery.
    Bazan I; Ramos A; Balay G; Negreira C
    Ultrasonics; 2018 Jul; 87():133-144. PubMed ID: 29482125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution.
    Driessen NJ; Bouten CV; Baaijens FP
    J Biomech Eng; 2005 Jun; 127(3):494-503. PubMed ID: 16060356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of stress concentration in the walls of the bovine coronary arterial branch.
    Thubrikar MJ; Roskelley SK; Eppink RT
    J Biomech; 1990; 23(1):15-26. PubMed ID: 2307688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive biaxial mechanical response of aged human iliac arteries.
    Schulze-Bauer CA; Mörth C; Holzapfel GA
    J Biomech Eng; 2003 Jun; 125(3):395-406. PubMed ID: 12929245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bilinear stress-strain relationship for arteries.
    Zhang W; Kassab GS
    Biomaterials; 2007 Feb; 28(6):1307-15. PubMed ID: 17112583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The numerical analysis of fluid-solid interactions for blood flow in arterial structures. Part 1: A review of models for arterial wall behaviour.
    Zhao SZ; Xu XY; Collins MW
    Proc Inst Mech Eng H; 1998; 212(4):229-40. PubMed ID: 9769691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of constitutive equations for human arteries from clinical data.
    Schulze-Bauer CA; Holzapfel GA
    J Biomech; 2003 Feb; 36(2):165-9. PubMed ID: 12547353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wall shear stress--an important determinant of endothelial cell function and structure--in the arterial system in vivo. Discrepancies with theory.
    Reneman RS; Arts T; Hoeks AP
    J Vasc Res; 2006; 43(3):251-69. PubMed ID: 16491020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of elastic nonlinearity on arterial anastomotic compliance.
    Schajer GS; Green SI; Davis AP; Hsiang YN
    J Biomech Eng; 1996 Nov; 118(4):445-51. PubMed ID: 8950647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental investigation of the distribution of residual strains in the artery wall.
    Greenwald SE; Moore JE; Rachev A; Kane TP; Meister JJ
    J Biomech Eng; 1997 Nov; 119(4):438-44. PubMed ID: 9407283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromechanical modelling of the arterial wall: influence of mechanical heterogeneities on the wall stress distribution and the peak wall stress.
    Toungara M; Orgéas L; Geindreau C; Bailly L
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():22-4. PubMed ID: 23923834
    [No Abstract]   [Full Text] [Related]  

  • 20. A novel arterial constitutive model in a commercial finite element package: Application to balloon angioplasty.
    Zhao X; Liu Y; Zhang W; Wang C; Kassab GS
    J Theor Biol; 2011 Oct; 286(1):92-9. PubMed ID: 21689665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.