These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 8302031)

  • 1. Nonhomogeneous ventricular wall strain: analysis of errors and accuracy.
    Waldman LK; McCulloch AD
    J Biomech Eng; 1993 Nov; 115(4B):497-502. PubMed ID: 8302031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonhomogeneous analysis of epicardial strain distributions during acute myocardial ischemia in the dog.
    Hashima AR; Young AA; McCulloch AD; Waldman LK
    J Biomech; 1993 Jan; 26(1):19-35. PubMed ID: 8423166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-homogeneous analysis of three-dimensional transmural finite deformation in canine ventricular myocardium.
    McCulloch AD; Omens JH
    J Biomech; 1991; 24(7):539-48. PubMed ID: 1880138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhomogeneous deformation as a source of error in strain measurements derived from implanted markers in the canine left ventricle.
    Douglas AS; Hunter WC; Wiseman MD
    J Biomech; 1990; 23(4):331-41. PubMed ID: 2335531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spline surface interpolation for calculating 3-D ventricular strains from MRI tissue tagging.
    Moulton MJ; Creswell LL; Downing SW; Actis RL; Szabo BA; Vannier MW; Pasque MK
    Am J Physiol; 1996 Jan; 270(1 Pt 2):H281-97. PubMed ID: 8769763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.
    Masithulela F
    Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-dimensional finite element method for large elastic deformations of ventricular myocardium: II--Prolate spheroidal coordinates.
    Costa KD; Hunter PJ; Wayne JS; Waldman LK; Guccione JM; McCulloch AD
    J Biomech Eng; 1996 Nov; 118(4):464-72. PubMed ID: 8950649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonhomogeneous strain from sparse marker arrays for analysis of transmural myocardial mechanics.
    Kindberg K; Karlsson M; Ingels NB; Criscione JC
    J Biomech Eng; 2007 Aug; 129(4):603-10. PubMed ID: 17655482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residual strain in rat left ventricle.
    Omens JH; Fung YC
    Circ Res; 1990 Jan; 66(1):37-45. PubMed ID: 2295143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite element model of the human left ventricular systole.
    Dorri F; Niederer PF; Lunkenheimer PP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):319-41. PubMed ID: 17132618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full-field analysis of epicardial strain in an in vitro porcine heart platform.
    Ferraiuoli P; Kappler B; van Tuijl S; Stijnen M; de Mol BAJM; Fenner JW; Narracott AJ
    J Mech Behav Biomed Mater; 2019 Mar; 91():294-300. PubMed ID: 30611926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel, view-independent method for strain mapping in myocardial elastography: eliminating angle and centroid dependence.
    Zervantonakis IK; Fung-Kee-Fung SD; Lee WN; Konofagou EE
    Phys Med Biol; 2007 Jul; 52(14):4063-80. PubMed ID: 17664595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of regional mechanical properties of abdominal aortic aneurysms to advance finite element modeling of rupture risk.
    Tierney ÁP; Callanan A; McGloughlin TM
    J Endovasc Ther; 2012 Feb; 19(1):100-14. PubMed ID: 22313210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method for aortic wall strain measurement with three-dimensional ultrasound speckle tracking and fitted finite element analysis.
    Karatolios K; Wittek A; Nwe TH; Bihari P; Shelke A; Josef D; Schmitz-Rixen T; Geks J; Maisch B; Blase C; Moosdorf R; Vogt S
    Ann Thorac Surg; 2013 Nov; 96(5):1664-71. PubMed ID: 23998405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model.
    Xia L; Huo M; Wei Q; Liu F; Crozier S
    Phys Med Biol; 2005 Apr; 50(8):1901-17. PubMed ID: 15815103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an in vivo method for determining material properties of passive myocardium.
    Remme EW; Hunter PJ; Smiseth O; Stevens C; Rabben SI; Skulstad H; Angelsen BB
    J Biomech; 2004 May; 37(5):669-78. PubMed ID: 15046996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo assessment of nonlinear myocardial deformation using finite element analysis and three-dimensional echocardiographic reconstruction.
    Gotteiner NL; Han G; Chandran KB; Vonesh MJ; Bresticker M; Greene R; Oba J; Kane BJ; Joob A; McPherson DD
    Am J Card Imaging; 1995 Jul; 9(3):185-94. PubMed ID: 7549359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural finite deformation model of the left ventricle during diastole and systole.
    Nevo E; Lanir Y
    J Biomech Eng; 1989 Nov; 111(4):342-9. PubMed ID: 2486374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of partial left ventriculectomy on left ventricular geometry and wall stress in excised porcine hearts.
    Green GR; Moon MR; DeAnda A; Daughters GT; Glasson JR; Miller DC
    J Heart Valve Dis; 1998 Sep; 7(5):474-83. PubMed ID: 9793842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmural distribution of three-dimensional strain in the isolated arrested canine left ventricle.
    Omens JH; May KD; McCulloch AD
    Am J Physiol; 1991 Sep; 261(3 Pt 2):H918-28. PubMed ID: 1887936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.