These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8302159)

  • 21. Involvement of mature tau isoforms in the stabilization of neurites in PC12 cells.
    Hanemaaijer R; Ginzburg I
    J Neurosci Res; 1991 Sep; 30(1):163-71. PubMed ID: 1795400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein 4.1R regulates interphase microtubule organization at the centrosome.
    Pérez-Ferreiro CM; Vernos I; Correas I
    J Cell Sci; 2004 Dec; 117(Pt 25):6197-206. PubMed ID: 15564380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Orientation, assembly, and stability of microtubule bundles induced by a fragment of tau protein.
    Brandt R; Lee G
    Cell Motil Cytoskeleton; 1994; 28(2):143-54. PubMed ID: 8087873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Serum-induced neurite retraction in CAD cells--involvement of an ATP-actin retractile system and the lack of microtubule-associated proteins.
    Chesta ME; Carbajal A; Arce CA; Bisig CG
    FEBS J; 2014 Nov; 281(21):4767-78. PubMed ID: 25112570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of tau protein in COS-1 cells results in the stabilization of centrosome-independent microtubules and extension of cytoplasmic processes.
    Montejo de Garcini E; de la Luna S; Dominguez JE; Avila J
    Mol Cell Biochem; 1994 Jan; 130(2):187-96. PubMed ID: 8028597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau.
    Li B; Chohan MO; Grundke-Iqbal I; Iqbal K
    Acta Neuropathol; 2007 May; 113(5):501-11. PubMed ID: 17372746
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of fluorescently derivatized bovine tau protein and its localization and functions in cultured Chinese hamster ovary cells.
    Lu Q; Wood JG
    Cell Motil Cytoskeleton; 1993; 25(2):190-200. PubMed ID: 8324832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Domains of tau protein and interactions with microtubules.
    Gustke N; Trinczek B; Biernat J; Mandelkow EM; Mandelkow E
    Biochemistry; 1994 Aug; 33(32):9511-22. PubMed ID: 8068626
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of microtubule-associated proteins MAP2 and tau in cultured rat brain oligodendrocytes.
    Müller R; Heinrich M; Heck S; Blohm D; Richter-Landsberg C
    Cell Tissue Res; 1997 May; 288(2):239-49. PubMed ID: 9082959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of microtubule stabilization and destabilization on tau immunoreactivity in cultured hippocampal neurons.
    Mattson MP
    Brain Res; 1992 Jun; 582(1):107-18. PubMed ID: 1354011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of 1N3R-Tau isoform inhibits cell proliferation by inducing S phase arrest in N2a cells.
    Li L; Xu ZP; Liu GP; Xu C; Wang ZH; Li XG; Liu EJ; Zeng J; Chai DM; Yao WL; Wang JZ
    PLoS One; 2015; 10(3):e0119865. PubMed ID: 25822823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organization of actin and microtubules during process formation in tau-expressing Sf9 cells.
    Knowles R; LeClerc N; Kosik KS
    Cell Motil Cytoskeleton; 1994; 28(3):256-64. PubMed ID: 7954853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death.
    Feinstein SC; Wilson L
    Biochim Biophys Acta; 2005 Jan; 1739(2-3):268-79. PubMed ID: 15615645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Missense point mutations of tau to segregate with FTDP-17 exhibit site-specific effects on microtubule structure in COS cells: a novel action of R406W mutation.
    Sahara N; Tomiyama T; Mori H
    J Neurosci Res; 2000 May; 60(3):380-7. PubMed ID: 10797541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overexpression of tau in a nonneuronal cell induces long cellular processes.
    Knops J; Kosik KS; Lee G; Pardee JD; Cohen-Gould L; McConlogue L
    J Cell Biol; 1991 Aug; 114(4):725-33. PubMed ID: 1678391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differences in the abilities of human tau isoforms to promote microtubule assembly.
    Scott CW; Blowers DP; Barth PT; Lo MM; Salama AI; Caputo CB
    J Neurosci Res; 1991 Sep; 30(1):154-62. PubMed ID: 1795399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of the phosphorylation state and microtubule-binding activity of Tau by protein phosphatase 2A.
    Sontag E; Nunbhakdi-Craig V; Lee G; Bloom GS; Mumby MC
    Neuron; 1996 Dec; 17(6):1201-7. PubMed ID: 8982166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct FTDP-17 missense mutations in tau produce tau aggregates and other pathological phenotypes in transfected CHO cells.
    Vogelsberg-Ragaglia V; Bruce J; Richter-Landsberg C; Zhang B; Hong M; Trojanowski JQ; Lee VM
    Mol Biol Cell; 2000 Dec; 11(12):4093-104. PubMed ID: 11102510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. tau Regulation of microtubule-microtubule spacing and bundling.
    Frappier TF; Georgieff IS; Brown K; Shelanski ML
    J Neurochem; 1994 Dec; 63(6):2288-94. PubMed ID: 7964749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assembly and bundling of marginal band microtubule protein: role of tau.
    Sanchez I; Cohen WD
    Cell Motil Cytoskeleton; 1994; 29(1):57-71. PubMed ID: 7820858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.