These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

584 related articles for article (PubMed ID: 8302866)

  • 1. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control.
    Hammond C; Braakman I; Helenius A
    Proc Natl Acad Sci U S A; 1994 Feb; 91(3):913-7. PubMed ID: 8302866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins.
    Peterson JR; Ora A; Van PN; Helenius A
    Mol Biol Cell; 1995 Sep; 6(9):1173-84. PubMed ID: 8534914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum.
    Hebert DN; Foellmer B; Helenius A
    Cell; 1995 May; 81(3):425-33. PubMed ID: 7736594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cotranslational folding and calnexin binding during glycoprotein synthesis.
    Chen W; Helenius J; Braakman I; Helenius A
    Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6229-33. PubMed ID: 7541532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding of VSV G protein: sequential interaction with BiP and calnexin.
    Hammond C; Helenius A
    Science; 1994 Oct; 266(5184):456-8. PubMed ID: 7939687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin.
    Hebert DN; Zhang JX; Chen W; Foellmer B; Helenius A
    J Cell Biol; 1997 Nov; 139(3):613-23. PubMed ID: 9348279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trimming and readdition of glucose to N-linked oligosaccharides determines calnexin association of a substrate glycoprotein in living cells.
    Cannon KS; Helenius A
    J Biol Chem; 1999 Mar; 274(11):7537-44. PubMed ID: 10066821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rubella virus glycoprotein interaction with the endoplasmic reticulum calreticulin and calnexin.
    Nakhasi HL; Ramanujam M; Atreya CD; Hobman TC; Lee N; Esmaili A; Duncan RC
    Arch Virol; 2001; 146(1):1-14. PubMed ID: 11266204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Truncated N-glycans affect protein folding in the ER of CHO-derived mutant cell lines without preventing calnexin binding.
    Ermonval M; Duvet S; Zonneveld D; Cacan R; Buttin G; Braakman I
    Glycobiology; 2000 Jan; 10(1):77-87. PubMed ID: 10570226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein glucosylation and its role in protein folding.
    Parodi AJ
    Annu Rev Biochem; 2000; 69():69-93. PubMed ID: 10966453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calnexin fails to associate with substrate proteins in glucosidase-deficient cell lines.
    Ora A; Helenius A
    J Biol Chem; 1995 Nov; 270(44):26060-2. PubMed ID: 7592804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro reconstitution of calreticulin-substrate interactions.
    Peterson JR; Helenius A
    J Cell Sci; 1999 Aug; 112 ( Pt 16)():2775-84. PubMed ID: 10413684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins.
    Ware FE; Vassilakos A; Peterson PA; Jackson MR; Lehrman MA; Williams DB
    J Biol Chem; 1995 Mar; 270(9):4697-704. PubMed ID: 7876241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate-specific requirements for UGT1-dependent release from calnexin.
    Soldà T; Galli C; Kaufman RJ; Molinari M
    Mol Cell; 2007 Jul; 27(2):238-249. PubMed ID: 17643373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding of rabies virus glycoprotein: epitope acquisition and interaction with endoplasmic reticulum chaperones.
    Gaudin Y
    J Virol; 1997 May; 71(5):3742-50. PubMed ID: 9094649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation.
    Parodi AJ
    Biochem J; 2000 May; 348 Pt 1(Pt 1):1-13. PubMed ID: 10794707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trypanosoma cruzi calreticulin is a lectin that binds monoglucosylated oligosaccharides but not protein moieties of glycoproteins.
    Labriola C; Cazzulo JJ; Parodi AJ
    Mol Biol Cell; 1999 May; 10(5):1381-94. PubMed ID: 10233151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycan-dependent and -independent association of vesicular stomatitis virus G protein with calnexin.
    Cannon KS; Hebert DN; Helenius A
    J Biol Chem; 1996 Jun; 271(24):14280-4. PubMed ID: 8662990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum.
    Molinari M; Helenius A
    Science; 2000 Apr; 288(5464):331-3. PubMed ID: 10764645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus.
    Hammond C; Helenius A
    J Cell Biol; 1994 Jul; 126(1):41-52. PubMed ID: 8027184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.