BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 830324)

  • 1. Evaluation of cerebrospinal fluid production in the development of communicating hydrocephalus.
    James AE; Epstein M; Novak G; Burns B
    Radiology; 1977 Jan; 122(1):143-7. PubMed ID: 830324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles.
    Klarica M; Oresković D; Bozić B; Vukić M; Butković V; Bulat M
    Neuroscience; 2009 Feb; 158(4):1397-405. PubMed ID: 19111908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ventricular wall granulations and draining of cerebrospinal fluid in chronic giant hydrocephalus.
    Masdeu JC; Pascual B; Bressi F; Casale M; Prieto E; Arbizu J; Fernández-Seara MA
    Arch Neurol; 2009 Feb; 66(2):262-7. PubMed ID: 19204166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flowing cerebrospinal fluid in normal and hydrocephalic states: appearance on MR images.
    Bradley WG; Kortman KE; Burgoyne B
    Radiology; 1986 Jun; 159(3):611-6. PubMed ID: 3704142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Clinical study of ventriculo-lumbar perfusion in the patients of so-called normal pressure hydrocephalus (author's transl)].
    Yamasaki S; Hirayama A; Ebara K; Sato N; Sato H
    No Shinkei Geka; 1977 Jul; 5(8):823-31. PubMed ID: 561322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of hydrocephalus and classical hypothesis of cerebrospinal fluid hydrodynamics: facts and illusions.
    Orešković D; Klarica M
    Prog Neurobiol; 2011 Aug; 94(3):238-58. PubMed ID: 21641963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normal and hydrocephalic brain dynamics: the role of reduced cerebrospinal fluid reabsorption in ventricular enlargement.
    Linninger AA; Sweetman B; Penn R
    Ann Biomed Eng; 2009 Jul; 37(7):1434-47. PubMed ID: 19373558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Compensated hyperosmolarity" of cerebrospinal fluid and the development of hydrocephalus.
    Klarica M; Miše B; Vladić A; Radoš M; Orešković D
    Neuroscience; 2013 Sep; 248():278-89. PubMed ID: 23806710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebrospinal fluid dynamics and hydrocephalus after experimental subarachnoid hemorrhage.
    Black PM; Tzouras A; Foley L
    Neurosurgery; 1985 Jul; 17(1):57-62. PubMed ID: 4022288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Downregulation of cerebrospinal fluid production in patients with chronic hydrocephalus.
    Silverberg GD; Huhn S; Jaffe RA; Chang SD; Saul T; Heit G; Von Essen A; Rubenstein E
    J Neurosurg; 2002 Dec; 97(6):1271-5. PubMed ID: 12507122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolving concepts of cerebrospinal fluid physiology.
    Bergsneider M
    Neurosurg Clin N Am; 2001 Oct; 12(4):631-8, vii. PubMed ID: 11524285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypothesis for lateral ventricular dilatation in communicating hydrocephalus: new understanding of the Monro-Kellie hypothesis in the aspect of cardiac energy transfer through arterial blood flow.
    Lee HS; Yoon SH
    Med Hypotheses; 2009 Feb; 72(2):174-7. PubMed ID: 18976868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebrospinal fluid circulation and hydrocephalus.
    Leinonen V; Vanninen R; Rauramaa T
    Handb Clin Neurol; 2017; 145():39-50. PubMed ID: 28987185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The production of cerebrospinal fluid in experimental communicating hydrocephalus.
    James AE; Novak G; Bahr AL; Burns B
    Exp Brain Res; 1977 Apr; 27(5):553-7. PubMed ID: 852531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebrospinal fluid pathways from cisterns to ventricles in N-butyl cyanoacrylate-induced hydrocephalic rats.
    Park JH; Park YS; Suk JS; Park SW; Hwang SN; Nam TK; Kim YB; Lee WB
    J Neurosurg Pediatr; 2011 Dec; 8(6):640-6. PubMed ID: 22132924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of osmolarity on CSF volume during ventriculo-aqueductal and ventriculo-cisternal perfusions in cats.
    Maraković J; Oresković D; Rados M; Vukić M; Jurjević I; Chudy D; Klarica M
    Neurosci Lett; 2010 Oct; 484(2):93-7. PubMed ID: 20674671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Factors affecting the development of chronic hydrocephalus following subarachnoid hemorrhage, with special emphasis on the role of ventricular and lumbar drainage].
    Fülöp B; Deak G; Mencser Z; Kuncz A; Barzó P
    Ideggyogy Sz; 2009 Jul; 62(7-8):255-61. PubMed ID: 19685703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The rat in experimental obstructive hydrocephalus.
    Hochwald GM; Nakamura S; Camins MB
    Z Kinderchir; 1981 Dec; 34(4):403-10. PubMed ID: 7331547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New models for analysing hydrocephalus and disorders of CSF volume transmission.
    Johanson C; Del Bigio M; Kinsman S; Miyan J; Pattisapu J; Robinson M; Jones HC
    Br J Neurosurg; 2001 Jun; 15(3):281-3. PubMed ID: 11478072
    [No Abstract]   [Full Text] [Related]  

  • 20. Imaging of cerebrospinal fluid space and movement of hydrocephalus mice using near infrared fluorescence.
    Shibata Y; Kruskal JB; Palmer MR
    Neurol Sci; 2007 Apr; 28(2):87-92. PubMed ID: 17464471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.