These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 8304140)
1. Molybdenum-pterin complexes: a functional and structural model for the binding site in the enzyme dimethyl sulfoxide reductase. Fischer B; Schmalle H; Dubler E; Viscontini M Adv Exp Med Biol; 1993; 338():369-72. PubMed ID: 8304140 [No Abstract] [Full Text] [Related]
2. Resonance Raman spectroscopic characterization of the molybdopterin active site of DMSO reductase. Kilpatrick L; Rajagopalan KV; Hilton J; Bastian NR; Stiefel EI; Pilato RS; Spiro TG Biochemistry; 1995 Mar; 34(9):3032-9. PubMed ID: 7893715 [TBL] [Abstract][Full Text] [Related]
3. Molecular analysis of dimethylsulfoxide reductase: a complex iron-sulfur molybdoenzyme of Escherichia coli. Weiner JH; Rothery RA; Sambasivarao D; Trieber CA Biochim Biophys Acta; 1992 Aug; 1102(1):1-18. PubMed ID: 1324728 [No Abstract] [Full Text] [Related]
4. Characterisation of the pterin molybdenum cofactor in dimethylsulfoxide reductase of Rhodobacter capsulatus. Solomon PS; Lane I; Hanson GR; McEwan AG Eur J Biochem; 1997 May; 246(1):200-3. PubMed ID: 9210484 [TBL] [Abstract][Full Text] [Related]
6. Reversible dissociation of thiolate ligands from molybdenum in an enzyme of the dimethyl sulfoxide reductase family. Bray RC; Adams B; Smith AT; Bennett B; Bailey S Biochemistry; 2000 Sep; 39(37):11258-69. PubMed ID: 10985771 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 A resolution. Schneider F; Löwe J; Huber R; Schindelin H; Kisker C; Knäblein J J Mol Biol; 1996 Oct; 263(1):53-69. PubMed ID: 8890912 [TBL] [Abstract][Full Text] [Related]
8. Identification of YdhV as the First Molybdoenzyme Binding a Bis-Mo-MPT Cofactor in Escherichia coli. Reschke S; Duffus BR; Schrapers P; Mebs S; Teutloff C; Dau H; Haumann M; Leimkühler S Biochemistry; 2019 Apr; 58(17):2228-2242. PubMed ID: 30945846 [TBL] [Abstract][Full Text] [Related]
9. The biosynthesis of the molybdenum cofactors. Mendel RR; Leimkühler S J Biol Inorg Chem; 2015 Mar; 20(2):337-47. PubMed ID: 24980677 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and structures of bis(dithiolene)molybdenum complexes related to the active sites of the DMSO reductase enzyme family. Lim BS; Donahue JP; Holm RH Inorg Chem; 2000 Jan; 39(2):263-73. PubMed ID: 11272534 [TBL] [Abstract][Full Text] [Related]
11. Structure and reversible pyran formation in molybdenum pyranopterin dithiolene models of the molybdenum cofactor. Williams BR; Fu Y; Yap GP; Burgmayer SJ J Am Chem Soc; 2012 Dec; 134(48):19584-7. PubMed ID: 23157708 [TBL] [Abstract][Full Text] [Related]
12. Implications of Pyran Cyclization and Pterin Conformation on Oxidized Forms of the Molybdenum Cofactor. Gisewhite DR; Yang J; Williams BR; Esmail A; Stein B; Kirk ML; Burgmayer SJN J Am Chem Soc; 2018 Oct; 140(40):12808-12818. PubMed ID: 30200760 [TBL] [Abstract][Full Text] [Related]
13. Which functional groups of the molybdopterin ligand should be considered when modeling the active sites of the molybdenum and tungsten cofactors? A density functional theory study. Ryde U; Schulzke C; Starke K J Biol Inorg Chem; 2009 Sep; 14(7):1053-64. PubMed ID: 19479286 [TBL] [Abstract][Full Text] [Related]
14. Chemistry and biology of the molybdenum cofactors. Rajagopalan KV; Johnson JL; Wuebbens MM; Pitterle DM; Hilton JC; Zurick TR; Garrett RM Adv Exp Med Biol; 1993; 338():355-62. PubMed ID: 8304138 [No Abstract] [Full Text] [Related]
15. Recent developments in the study of molybdoenzyme models. Basu P; Burgmayer SJ J Biol Inorg Chem; 2015 Mar; 20(2):373-83. PubMed ID: 25578808 [TBL] [Abstract][Full Text] [Related]
16. Molybdopterin guanine dinucleotide: a modified form of molybdopterin identified in the molybdenum cofactor of dimethyl sulfoxide reductase from Rhodobacter sphaeroides forma specialis denitrificans. Johnson JL; Bastian NR; Rajagopalan KV Proc Natl Acad Sci U S A; 1990 Apr; 87(8):3190-4. PubMed ID: 2326278 [TBL] [Abstract][Full Text] [Related]
17. The active sites of molybdenum- and tungsten-containing enzymes. McMaster J; Enemark JH Curr Opin Chem Biol; 1998 Apr; 2(2):201-7. PubMed ID: 9667924 [TBL] [Abstract][Full Text] [Related]
18. An active site tyrosine influences the ability of the dimethyl sulfoxide reductase family of molybdopterin enzymes to reduce S-oxides. Johnson KE; Rajagopalan KV J Biol Chem; 2001 Apr; 276(16):13178-85. PubMed ID: 11278798 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the active-site design of molybdenum oxo-transfer enzymes by quantum mechanical calculations. Li J; Ryde U Inorg Chem; 2014 Nov; 53(22):11913-24. PubMed ID: 25372012 [TBL] [Abstract][Full Text] [Related]
20. Dimethylsulfoxide reductase: an enzyme capable of catalysis with either molybdenum or tungsten at the active site. Stewart LJ; Bailey S; Bennett B; Charnock JM; Garner CD; McAlpine AS J Mol Biol; 2000 Jun; 299(3):593-600. PubMed ID: 10835270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]