These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8304455)

  • 1. Mechanism of riboflavine uptake by Caco-2 human intestinal epithelial cells.
    Said HM; Ma TY
    Am J Physiol; 1994 Jan; 266(1 Pt 1):G15-21. PubMed ID: 8304455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of transport of riboflavin in rabbit intestinal brush border membrane vesicles.
    Said HM; Mohammadkhani R; McCloud E
    Proc Soc Exp Biol Med; 1993 Apr; 202(4):428-34. PubMed ID: 8456106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Riboflavin transport by rabbit renal brush border membrane vesicles.
    Yanagawa N; Jo OD; Said HM
    Biochim Biophys Acta; 1997 Dec; 1330(2):172-8. PubMed ID: 9408170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake of riboflavin by intestinal basolateral membrane vesicles: a specialized carrier-mediated process.
    Said HM; Hollander D; Mohammadkhani R
    Biochim Biophys Acta; 1993 Jun; 1148(2):263-8. PubMed ID: 8504119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of riboflavin uptake by cultured human retinal pigment epithelial ARPE-19 cells: possible regulation by an intracellular Ca2+-calmodulin-mediated pathway.
    Said HM; Wang S; Ma TY
    J Physiol; 2005 Jul; 566(Pt 2):369-77. PubMed ID: 15878949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular regulation of intestinal folate uptake: studies with cultured IEC-6 epithelial cells.
    Said HM; Ma TY; Ortiz A; Tapia A; Valerio CK
    Am J Physiol; 1997 Feb; 272(2 Pt 1):C729-36. PubMed ID: 9124317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Riboflavin uptake by human-derived colonic epithelial NCM460 cells.
    Said HM; Ortiz A; Moyer MP; Yanagawa N
    Am J Physiol Cell Physiol; 2000 Feb; 278(2):C270-6. PubMed ID: 10666022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Riboflavin uptake by native Xenopus laevis oocytes.
    Dyer DL; Said HM
    Biochim Biophys Acta; 1995 Mar; 1234(1):15-21. PubMed ID: 7880856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism and regulation of vitamin B(6) uptake by renal tubular epithelia: studies with cultured OK cells.
    Said HM; Ortiz A; Vaziri ND
    Am J Physiol Renal Physiol; 2002 Mar; 282(3):F465-71. PubMed ID: 11832427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2.
    Dantzig AH; Bergin L
    Biochim Biophys Acta; 1990 Sep; 1027(3):211-7. PubMed ID: 2397233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of intestinal folate carrier clone expressed in IEC-6 cells and in Xenopus oocytes.
    Kumar CK; Nguyen TT; Gonzales FB; Said HM
    Am J Physiol; 1998 Jan; 274(1):C289-94. PubMed ID: 9458739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism and regulation of riboflavin uptake by human renal proximal tubule epithelial cell line HK-2.
    Kumar CK; Yanagawa N; Ortiz A; Said HM
    Am J Physiol; 1998 Jan; 274(1):F104-10. PubMed ID: 9458829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A carrier-mediated mechanism for pyridoxine uptake by human intestinal epithelial Caco-2 cells: regulation by a PKA-mediated pathway.
    Said HM; Ortiz A; Ma TY
    Am J Physiol Cell Physiol; 2003 Nov; 285(5):C1219-25. PubMed ID: 12867360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of thiamine in human intestine: mechanism and regulation in intestinal epithelial cell model Caco-2.
    Said HM; Ortiz A; Kumar CK; Chatterjee N; Dudeja PK; Rubin S
    Am J Physiol; 1999 Oct; 277(4):C645-51. PubMed ID: 10516094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na(+)-dependent sulfate transport in opossum kidney cells is DIDS sensitive.
    Tenenhouse HS; Martel J
    Am J Physiol; 1993 Jul; 265(1 Pt 1):C54-61. PubMed ID: 8338138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Riboflavin uptake by the human-derived liver cells Hep G2: mechanism and regulation.
    Said HM; Ortiz A; Ma TY; McCloud E
    J Cell Physiol; 1998 Sep; 176(3):588-94. PubMed ID: 9699511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium-bicarbonate cotransport in guinea pig ileal crypt cells.
    MacLeod RJ; Redican F; Lembessis P; Hamilton JR; Field M
    Am J Physiol; 1996 Mar; 270(3 Pt 1):C786-93. PubMed ID: 8638658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human intestinal cell line Caco-2: a useful model for studying cellular and molecular regulation of biotin uptake.
    Ma TY; Dyer DL; Said HM
    Biochim Biophys Acta; 1994 Jan; 1189(1):81-8. PubMed ID: 7508263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of butyrate transport in Caco-2 cells.
    Gonçalves P; Araújo JR; Pinho MJ; Martel F
    Naunyn Schmiedebergs Arch Pharmacol; 2009 Apr; 379(4):325-36. PubMed ID: 19023563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cefaclor uptake by the proton-dependent dipeptide transport carrier of human intestinal Caco-2 cells and comparison to cephalexin uptake.
    Dantzig AH; Tabas LB; Bergin L
    Biochim Biophys Acta; 1992 Dec; 1112(2):167-73. PubMed ID: 1457450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.