BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 8304467)

  • 1. Upregulation of sodium conductive pathways in alveolar type II cells in sublethal hyperoxia.
    Haskell JF; Yue G; Benos DJ; Matalon S
    Am J Physiol; 1994 Jan; 266(1 Pt 1):L30-7. PubMed ID: 8304467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunocytochemical and functional characterization of Na+ conductance in adult alveolar pneumocytes.
    Matalon S; Kirk KL; Bubien JK; Oh Y; Hu P; Yue G; Shoemaker R; Cragoe EJ; Benos DJ
    Am J Physiol; 1992 May; 262(5 Pt 1):C1228-38. PubMed ID: 1375433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Culture-induced alterations in alveolar type II cell Na+ conductance.
    Yue G; Hu P; Oh Y; Jilling T; Shoemaker RL; Benos DJ; Cragoe EJ; Matalon S
    Am J Physiol; 1993 Sep; 265(3 Pt 1):C630-40. PubMed ID: 8214019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased expression and activity of sodium channels in alveolar type II cells of hyperoxic rats.
    Yue G; Russell WJ; Benos DJ; Jackson RM; Olman MA; Matalon S
    Proc Natl Acad Sci U S A; 1995 Aug; 92(18):8418-22. PubMed ID: 7667305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical and molecular properties of amiloride-inhibitable Na+ channels in alveolar epithelial cells.
    Matalon S; Benos DJ; Jackson RM
    Am J Physiol; 1996 Jul; 271(1 Pt 1):L1-22. PubMed ID: 8760127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of low-amiloride-affinity sodium channels in alveolar type II cells.
    Yue G; Shoemaker RL; Matalon S
    Am J Physiol; 1994 Jul; 267(1 Pt 1):L94-100. PubMed ID: 8048548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and activity of epithelial sodium channel in hyperoxia-induced bronchopulmonary dysplasia in neonatal rats.
    Ji W; Fu J; Nie H; Xue X
    Pediatr Int; 2012 Dec; 54(6):735-42. PubMed ID: 22591391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amiloride-inhibitable Na+ conductive pathways in alveolar type II pneumocytes.
    Matalon S; Bridges RJ; Benos DJ
    Am J Physiol; 1991 Feb; 260(2 Pt 1):L90-6. PubMed ID: 1996666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of increased Na(+) transport in ATII cells by cAMP: we agree to disagree and do more experiments.
    Lazrak A; Nielsen VG; Matalon S
    Am J Physiol Lung Cell Mol Physiol; 2000 Feb; 278(2):L233-8. PubMed ID: 10666105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperoxic effects on alveolar sodium resorption and lung Na-K-ATPase.
    Carter EP; Wangensteen OD; Dunitz J; Ingbar DH
    Am J Physiol; 1997 Dec; 273(6):L1191-202. PubMed ID: 9435574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peroxynitrite inhibition of oxygen consumption and sodium transport in alveolar type II cells.
    Hu P; Ischiropoulos H; Beckman JS; Matalon S
    Am J Physiol; 1994 Jun; 266(6 Pt 1):L628-34. PubMed ID: 8023951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia reduces alveolar epithelial sodium and fluid transport in rats: reversal by beta-adrenergic agonist treatment.
    Vivona ML; Matthay M; Chabaud MB; Friedlander G; Clerici C
    Am J Respir Cell Mol Biol; 2001 Nov; 25(5):554-61. PubMed ID: 11713096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of terbutaline on sodium transport in alveolar type I and type II cells].
    Xu JG; Li TP; Wang P; Shen HY
    Nan Fang Yi Ke Da Xue Xue Bao; 2010 May; 30(5):966-8. PubMed ID: 20501369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alveolar but not intravenous S-ketamine inhibits alveolar sodium transport and lung fluid clearance in rats.
    Berger MM; Pitzer B; Zügel S; Wieland CW; Vlaar AP; Schultz MJ; Dahan A; Bärtsch P; Hollmann MW; Mairbäurl H
    Anesth Analg; 2010 Jul; 111(1):164-70. PubMed ID: 20519416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium channels in alveolar epithelial cells: molecular characterization, biophysical properties, and physiological significance.
    Matalon S; O'Brodovich H
    Annu Rev Physiol; 1999; 61():627-61. PubMed ID: 10099704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of lung liquid clearance during hyperoxia in isolated rat lungs.
    Sznajder JI; Olivera WG; Ridge KM; Rutschman DH
    Am J Respir Crit Care Med; 1995 May; 151(5):1519-25. PubMed ID: 7735609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of rat lung Na+,K(+)-ATPase gene expression by hyperoxia.
    Johnson CR; Guo Y; Helton ES; Matalon S; Jackson RM
    Exp Lung Res; 1998; 24(2):173-88. PubMed ID: 9555575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active sodium transport and alveolar epithelial Na-K-ATPase increase during subacute hyperoxia in rats.
    Olivera W; Ridge K; Wood LD; Sznajder JI
    Am J Physiol; 1994 May; 266(5 Pt 1):L577-84. PubMed ID: 8203551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of immunopurified alveolar type II cell Na+ channel protein into planar lipid bilayers.
    Senyk O; Ismailov I; Bradford AL; Baker RR; Matalon S; Benos DJ
    Am J Physiol; 1995 May; 268(5 Pt 1):C1148-56. PubMed ID: 7762607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upregulation of alveolar epithelial active Na+ transport is dependent on beta2-adrenergic receptor signaling.
    Mutlu GM; Dumasius V; Burhop J; McShane PJ; Meng FJ; Welch L; Dumasius A; Mohebahmadi N; Thakuria G; Hardiman K; Matalon S; Hollenberg S; Factor P
    Circ Res; 2004 Apr; 94(8):1091-100. PubMed ID: 15016730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.