These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8305457)

  • 1. The solute permeability of thylakoid membranes is reduced by low concentrations of trehalose as a co-solute.
    Bakaltcheva I; Williams WP; Schmitt JM; Hincha DK
    Biochim Biophys Acta; 1994 Jan; 1189(1):38-44. PubMed ID: 8305457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of proline, serine, and leucine with isolated spinach thylakoids: solute loading during freezing is not related to membrane fluidity.
    Popova AV; Schmitt JM; Hincha DK
    Cryobiology; 1998 Aug; 37(1):92-9. PubMed ID: 9698434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid composition determines the effects of arbutin on the stability of membranes.
    Hincha DK; Oliver AE; Crowe JH
    Biophys J; 1999 Oct; 77(4):2024-34. PubMed ID: 10512822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High concentrations of the compatible solute glycinebetaine destabilize model membranes under stress conditions.
    Hincha DK
    Cryobiology; 2006 Aug; 53(1):58-68. PubMed ID: 16696965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galactose-Specific Lectins Protect Isolated Thylakoids against Freeze-Thaw Damage.
    Hincha DK; Bakaltcheva I; Schmitt JM
    Plant Physiol; 1993 Sep; 103(1):59-65. PubMed ID: 12231914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential destabilization of membranes by tryptophan and phenylalanine during freezing: the roles of lipid composition and membrane fusion.
    Popova AV; Heyer AG; Hincha DK
    Biochim Biophys Acta; 2002 Mar; 1561(1):109-18. PubMed ID: 11988185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors contributing to inactivation of isolated thylakoid membranes during freezing in the presence of variable amounts of glucose and NaCl.
    Santarius KA; Giersch C
    Biophys J; 1984 Aug; 46(2):129-39. PubMed ID: 6478028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes of the fluidity of mitochondrial membranes induced by the permeability transition.
    Ricchelli F; Gobbo S; Moreno G; Salet C
    Biochemistry; 1999 Jul; 38(29):9295-300. PubMed ID: 10413503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trehalose Increases Freeze-Thaw Damage in Liposomes Containing Chloroplast Glycolipids.
    Hincha DK; Crowe JH
    Cryobiology; 1998 May; 36(3):245-9. PubMed ID: 9698423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trehalose-enhanced fluidity of the goat sperm membrane and its protection during freezing.
    Aboagla EM; Terada T
    Biol Reprod; 2003 Oct; 69(4):1245-50. PubMed ID: 12801983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of solutes on the freezing properties of and hydration forces in lipid lamellar phases.
    Yoon YH; Pope JM; Wolfe J
    Biophys J; 1998 Apr; 74(4):1949-65. PubMed ID: 9545055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Addition of oligosaccharide decreases the freezing lesions on human red blood cell membrane in the presence of dextran and glucose.
    Quan GB; Han Y; Liu MX; Fang L; Du W; Ren SP; Wang JX; Wang Y
    Cryobiology; 2011 Apr; 62(2):135-44. PubMed ID: 21276438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryopreservation of spinach chloroplast membranes by low-molecular-weight carbohydrates. II. Discrimination between colligative and noncolligative protection.
    Santarius KA; Giersch C
    Cryobiology; 1983 Feb; 20(1):90-9. PubMed ID: 6831914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the compatible solute sucrose on thylakoid membrane organization and violaxanthin de-epoxidation.
    Goss R; Schwarz C; Matzner M; Wilhelm C
    Planta; 2021 Aug; 254(3):52. PubMed ID: 34392410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclitols as cryoprotectants for spinach and chickpea thylakoids.
    Orthen B; Popp M
    Environ Exp Bot; 2000 Oct; 44(2):125-132. PubMed ID: 10996365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of two peripheral proteins from chloroplast thylakoid membranes in the presence of a Hofmeister series of chaotropic anions.
    Hincha DK
    Arch Biochem Biophys; 1998 Oct; 358(2):385-90. PubMed ID: 9784254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteins from frost-hardy leaves protect thylakoids against mechanical freeze-thaw damage in vitro.
    Hincha DK; Heber U; Schmitt JM
    Planta; 1990 Feb; 180(3):416-9. PubMed ID: 24202022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A decrease of lipid fluidity of the porcine intestinal brush-border membranes by treatment with malondialdehyde.
    Ohyashiki T; Sakata N; Matsui K
    J Biochem; 1992 Mar; 111(3):419-23. PubMed ID: 1587807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of amyloid β-peptide on the fluidity of phosphatidylcholine membranes: Uses and limitations of diphenylhexatriene fluorescence anisotropy.
    Suzuki M; Miura T
    Biochim Biophys Acta; 2015 Mar; 1848(3):753-9. PubMed ID: 25497764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryoprotection of phosphofructokinase with organic solutes: characterization of enhanced protection in the presence of divalent cations.
    Carpenter JF; Hand SC; Crowe LM; Crowe JH
    Arch Biochem Biophys; 1986 Nov; 250(2):505-12. PubMed ID: 2946263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.