These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Substrate specificity of the high-affinity glucose transport system of Pseudomonas aeruginosa. Wylie JL; Worobec EA Can J Microbiol; 1993 Jul; 39(7):722-5. PubMed ID: 8395965 [TBL] [Abstract][Full Text] [Related]
4. Isolation and characterization of chemotaxis mutants and genes of Pseudomonas aeruginosa. Masduki A; Nakamura J; Ohga T; Umezaki R; Kato J; Ohtake H J Bacteriol; 1995 Feb; 177(4):948-52. PubMed ID: 7860605 [TBL] [Abstract][Full Text] [Related]
5. Purification and properties of the periplasmic glucose-binding protein of Pseudomonas aeruginosa. Stinson MW; Cohen MA; Merrick JM J Bacteriol; 1977 Aug; 131(2):672-81. PubMed ID: 407216 [TBL] [Abstract][Full Text] [Related]
6. Cloning and characterization of chemotaxis genes in Pseudomonas aeruginosa. Kato J; Nakamura T; Kuroda A; Ohtake H Biosci Biotechnol Biochem; 1999 Jan; 63(1):155-61. PubMed ID: 10052136 [TBL] [Abstract][Full Text] [Related]
7. A two-component response regulator, gltR, is required for glucose transport activity in Pseudomonas aeruginosa PAO1. Sage AE; Proctor WD; Phibbs PV J Bacteriol; 1996 Oct; 178(20):6064-6. PubMed ID: 8830708 [TBL] [Abstract][Full Text] [Related]
8. Identification and characterization of the chemotactic transducer in Pseudomonas aeruginosa PAO1 for positive chemotaxis to trichloroethylene. Kim HE; Shitashiro M; Kuroda A; Takiguchi N; Ohtake H; Kato J J Bacteriol; 2006 Sep; 188(18):6700-2. PubMed ID: 16952963 [TBL] [Abstract][Full Text] [Related]
9. Chromosomal mapping of mutations affecting glycerol and glucose catabolism in Pseudomonas aeruginosa PAO. Cuskey SM; Phibbs PV J Bacteriol; 1985 Jun; 162(3):872-80. PubMed ID: 3922955 [TBL] [Abstract][Full Text] [Related]
10. Identification and characterization of the gltK gene encoding a membrane-associated glucose transport protein of pseudomonas aeruginosa. Adewoye LO; Worobec EA Gene; 2000 Aug; 253(2):323-30. PubMed ID: 10940570 [TBL] [Abstract][Full Text] [Related]
11. Ferric uptake regulator (Fur) mutants of Pseudomonas aeruginosa demonstrate defective siderophore-mediated iron uptake, altered aerobic growth, and decreased superoxide dismutase and catalase activities. Hassett DJ; Sokol PA; Howell ML; Ma JF; Schweizer HT; Ochsner U; Vasil ML J Bacteriol; 1996 Jul; 178(14):3996-4003. PubMed ID: 8763923 [TBL] [Abstract][Full Text] [Related]
12. Glucose-transport-deficient mutants of Schizosaccharomyces pombe: phenotype, genetics and use for genetic complementation. Milbradt B; Höfer M Microbiology (Reading); 1994 Oct; 140 ( Pt 10)():2617-23. PubMed ID: 8000531 [TBL] [Abstract][Full Text] [Related]
13. Genetic definition of the substrate selectivity of outer membrane porin protein OprD of Pseudomonas aeruginosa. Huang H; Hancock RE J Bacteriol; 1993 Dec; 175(24):7793-800. PubMed ID: 8253668 [TBL] [Abstract][Full Text] [Related]
14. Silent and functional changes in the periplasmic maltose-binding protein of Escherichia coli K12. II. Chemotaxis towards maltose. Duplay P; Szmelcman S J Mol Biol; 1987 Apr; 194(4):675-8. PubMed ID: 3309329 [TBL] [Abstract][Full Text] [Related]
15. Phosphate transport in Pseudomonas aeruginosa. Involvement of a periplasmic phosphate-binding protein. Poole K; Hancock RE Eur J Biochem; 1984 Nov; 144(3):607-12. PubMed ID: 6436026 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of Chinese hamster ovary cell mutants defective in glucose transport. Hasegawa K; Anraku Y; Kasahara M; Akamatsu Y; Nishijima M Biochim Biophys Acta; 1990 Mar; 1051(3):221-9. PubMed ID: 2178689 [TBL] [Abstract][Full Text] [Related]
17. Use of glucose transport mutants to examine the intrinsic properties of glucose transport processes in rat myoblasts. Mesmer OT; Chen XY; Lo TC Biochem Mol Biol Int; 1995 Jul; 36(3):605-16. PubMed ID: 7549960 [TBL] [Abstract][Full Text] [Related]