These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8306715)

  • 21. [The role of sympathetic cervical ganglion in the effect of clonidine for lowering intraocular pressure].
    Iizuka T; Koike N; Moriwaki Y; Ueda T; Koide R; Inatomi M; Fukado Y; Uchida E; Kobayashi S; Oguchi K
    Nippon Ganka Gakkai Zasshi; 1992 Feb; 96(2):146-51. PubMed ID: 1558011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A circadian rhythm of aqueous flow underlies the circadian rhythm of IOP in NZW rabbits.
    Smith SD; Gregory DS
    Invest Ophthalmol Vis Sci; 1989 Apr; 30(4):775-8. PubMed ID: 2703321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective suppression by bunazosin of alpha-adrenergic agonist evoked elevation of intraocular pressure in sympathectomized rabbit eyes.
    Nishimura K; Kuwayama Y; Matsugi T; Sun N; Shirasawa E
    Invest Ophthalmol Vis Sci; 1993 Apr; 34(5):1761-6. PubMed ID: 8097189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Melatonin does not increase IOP significantly in rabbits.
    Kiuchi Y; Mockovak ME; Gregory DS
    Curr Eye Res; 1993 Feb; 12(2):181-90. PubMed ID: 8449027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydroxyamphetamine increases intraocular pressure in rabbits.
    Okada K; Gregory DS
    Arch Ophthalmol; 2001 Feb; 119(2):235-9. PubMed ID: 11176985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rabbits have a circadian rhythm of aqueous humor cyclic AMP.
    Kiuchi Y; Gregory DS
    Curr Eye Res; 1992 Sep; 11(9):935-8. PubMed ID: 1385040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ocular adrenergic nerves contribute to control of the circadian rhythm of aqueous flow in rabbits.
    Yoshitomi T; Gregory DS
    Invest Ophthalmol Vis Sci; 1991 Mar; 32(3):523-8. PubMed ID: 1848209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of prostaglandin D2 and its analogues on intraocular pressure in rabbits.
    Goh Y; Nakajima M; Azuma I; Hayaishi O
    Jpn J Ophthalmol; 1988; 32(4):471-80. PubMed ID: 3236567
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuropeptide Y levels in the aqueous humor of rabbits.
    Hirota A; Gregory DS
    J Ocul Pharmacol Ther; 1996; 12(1):51-6. PubMed ID: 8925397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cervical ganglionectomy alters the circadian rhythm of intraocular pressure in New Zealand White rabbits.
    Gregory DS; Aviado DG; Sears ML
    Curr Eye Res; 1985 Dec; 4(12):1273-9. PubMed ID: 4085255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on the circadian rhythm of IOP in rabbits: correlation with aqueous inflow and cAMP content.
    Rowland JM; Sawyer WK; Tittel J; Ford CJ
    Curr Eye Res; 1986 Mar; 5(3):201-6. PubMed ID: 3009093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Can UK-14, 304-18 lower IOP in rabbits by a peripheral mechanism?
    Burke J; Crosson C; Potter D
    Curr Eye Res; 1989 Jun; 8(6):547-52. PubMed ID: 2743793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adrenergic decentralization modifies the circadian rhythm of intraocular pressure.
    Braslow RA; Gregory DS
    Invest Ophthalmol Vis Sci; 1987 Oct; 28(10):1730-2. PubMed ID: 3654147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of prostaglandin E2 and cholinergic drugs on intraocular pressure.
    Golubović S; Radmanović BZ
    Pharmacology; 1982; 25(3):149-53. PubMed ID: 6959163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kappa opioid agonist-induced changes in IOP: correlation with 3H-NE release and cAMP accumulation.
    Moore TT; Potter DE
    Exp Eye Res; 2001 Aug; 73(2):167-78. PubMed ID: 11446767
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of ETB receptor-selective agonist on IOP and blood-aqueous barrier in rabbit eyes: role of cyclooxygenase products.
    Haque MS; Sugiyama K; Taniguchi T; Okada K; Nakai Y; Kitazawa Y
    Jpn J Ophthalmol; 1995; 39(4):360-7. PubMed ID: 8926643
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intraocular pressure response to intravitreal injection of endothelin-1 and the mediatory role of ETA receptor, ETB receptor, and cyclooxygenase products in rabbits.
    Sugiyama K; Haque MS; Okada K; Taniguchi T; Kitazawa Y
    Curr Eye Res; 1995 Jun; 14(6):479-86. PubMed ID: 7671630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effects of ocular hypotensive agents on the circadian rhythm in intraocular pressure in rabbits as measured by telemetry].
    Akaishi T; Shimazaki A; Matsugi T; Miyawaki N; Hara H; Kuwayama Y
    Nippon Ganka Gakkai Zasshi; 2003 Sep; 107(9):513-8. PubMed ID: 14531310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of 8-iso prostaglandin E2 on aqueous humor dynamics in monkeys.
    Wang RF; Lee PY; Mittag TW; Podos SM; Serle JB; Becker B
    Arch Ophthalmol; 1998 Sep; 116(9):1213-6. PubMed ID: 9747682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The 5-HT(1A)Receptor agonist 8-OH-DPAT lowers intraocular pressure in normotensive NZW rabbits.
    Chidlow G; Nash MS; De Santis LM; Osborne NN
    Exp Eye Res; 1999 Dec; 69(6):587-93. PubMed ID: 10620387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.