These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 8306828)

  • 21. Identification of cohesin association sites at centromeres and along chromosome arms.
    Tanaka T; Cosma MP; Wirth K; Nasmyth K
    Cell; 1999 Sep; 98(6):847-58. PubMed ID: 10499801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Origin replication complex binding, nucleosome depletion patterns, and a primary sequence motif can predict origins of replication in a genome with epigenetic centromeres.
    Tsai HJ; Baller JA; Liachko I; Koren A; Burrack LS; Hickman MA; Thevandavakkam MA; Rusche LN; Berman J
    mBio; 2014 Sep; 5(5):e01703-14. PubMed ID: 25182328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kluyveromyces lactis SSO1 and SEB1 genes are functional in Saccharomyces cerevisiae and enhance production of secreted proteins when overexpressed.
    Toikkanen JH; Sundqvist L; Keränen S
    Yeast; 2004 Sep; 21(12):1045-55. PubMed ID: 15449305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast Kluyveromyces lactis.
    Wesolowski-Louvel M; Tanguy-Rougeau C; Fukuhara H
    Yeast; 1988 Mar; 4(1):71-81. PubMed ID: 3059713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deletions and rearrangements in Kluyveromyces lactis mitochondrial DNA.
    Hardy CM; Galeotti CL; Clark-Walker GD
    Curr Genet; 1989 Dec; 16(5-6):419-27. PubMed ID: 2692854
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomic exploration of the hemiascomycetous yeasts: 11. Kluyveromyces lactis.
    Bolotin-Fukuhara M; Toffano-Nioche C; Artiguenave F; Duchateau-Nguyen G; Lemaire M; Marmeisse R; Montrocher R; Robert C; Termier M; Wincker P; Wésolowski-Louvel M
    FEBS Lett; 2000 Dec; 487(1):66-70. PubMed ID: 11152886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cloning and analysis of the Kluyveromyces lactis TRP1 gene: a chromosomal locus flanked by genes encoding inorganic pyrophosphatase and histone H3.
    Stark MJ; Milner JS
    Yeast; 1989; 5(1):35-50. PubMed ID: 2538971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The lysine-rich C-terminal repeats of the centromere-binding factor 5 (Cbf5) of Kluyveromyces lactis are not essential for function.
    Winkler AA; Bobok A; Zonneveld BJ; Steensma HY; Hooykaas PJ
    Yeast; 1998 Jan; 14(1):37-48. PubMed ID: 9483794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Centromere structure and function in budding and fission yeasts.
    Carbon J; Clarke L
    New Biol; 1990 Jan; 2(1):10-9. PubMed ID: 2078550
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Random exploration of the Kluyveromyces lactis genome and comparison with that of Saccharomyces cerevisiae.
    Ozier-Kalogeropoulos O; Malpertuy A; Boyer J; Tekaia F; Dujon B
    Nucleic Acids Res; 1998 Dec; 26(23):5511-24. PubMed ID: 9826779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kluyveromyces lactis maintains Saccharomyces cerevisiae intron-encoded splicing signals.
    Deshler JO; Larson GP; Rossi JJ
    Mol Cell Biol; 1989 May; 9(5):2208-13. PubMed ID: 2664472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and characterization of the centromere from chromosome XIV in Saccharomyces cerevisiae.
    Neitz M; Carbon J
    Mol Cell Biol; 1985 Nov; 5(11):2887-93. PubMed ID: 3915768
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distinct transcriptional regulation of a gene coding for a mitochondrial protein in the yeasts Saccharomyces cerevisiae and Kluyveromyces lactis despite similar promoter structures.
    Mulder W; Scholten IH; Grivell LA
    Mol Microbiol; 1995 Sep; 17(5):813-24. PubMed ID: 8596431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome.
    Snoek IS; Steensma HY
    FEMS Yeast Res; 2006 May; 6(3):393-403. PubMed ID: 16630279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural analysis of a Candida glabrata centromere and its functional homology to the Saccharomyces cerevisiae centromere.
    Kitada K; Yamaguchi E; Hamada K; Arisawa M
    Curr Genet; 1997 Feb; 31(2):122-7. PubMed ID: 9021128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromatin structure of altered yeast centromeres.
    Saunders M; Fitzgerald-Hayes M; Bloom K
    Proc Natl Acad Sci U S A; 1988 Jan; 85(1):175-9. PubMed ID: 2829168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a gene similar to BIK1 in the yeast Kluyveromyces lactis.
    Lamas-Maceiras M; Cerdán ME; Lloret A; Freire-Picos MA
    Yeast; 2004 Oct; 21(13):1067-75. PubMed ID: 15484289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucose repression of the Kluyveromyces lactis invertase gene KlINV1 does not require Mig1p.
    Georis I; Cassart JP; Breunig KD; Vandenhaute J
    Mol Gen Genet; 1999 Jun; 261(4-5):862-70. PubMed ID: 10394924
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cloning and characterization of the Kluyveromyces lactis homocysteine synthase gene.
    Brzywczy J; Paszewski A
    Yeast; 1999 Sep; 15(13):1403-9. PubMed ID: 10509022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The basis for evolution of DNA-binding specificity of the Aft1 transcription factor in yeasts.
    Gonçalves IR; Conde e Silva N; Garay CL; Lesuisse E; Camadro JM; Blaiseau PL
    Genetics; 2014 Jan; 196(1):149-60. PubMed ID: 24172132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.