BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 8307032)

  • 1. The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen. Achievement of high enrichment of the 7-formyl-group oxygen from 18O2 in greening maize leaves.
    Porra RJ; Schäfer W; Cmiel E; Katheder I; Scheer H
    Eur J Biochem; 1994 Jan; 219(1-2):671-9. PubMed ID: 8307032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Derivation of the formyl-group oxygen of chlorophyll b from molecular oxygen in greening leaves of a higher plant (Zea mays).
    Porra RJ; Schäfer W; Cmiel E; Katheder I; Scheer H
    FEBS Lett; 1993 May; 323(1-2):31-4. PubMed ID: 8495742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of the chlorophyll b formyl oxygen in Chlorella vulgaris.
    Schneegurt MA; Beale SI
    Biochemistry; 1992 Dec; 31(47):11677-83. PubMed ID: 1445904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 18O labeling of chlorophyll d in Acaryochloris marina reveals that chlorophyll a and molecular oxygen are precursors.
    Schliep M; Crossett B; Willows RD; Chen M
    J Biol Chem; 2010 Sep; 285(37):28450-6. PubMed ID: 20610399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The participation of the Shemin and C5 pathways in 5-aminolaevulinate and chlorophyll formation in higher plants and facultative photosynthetic bacteria.
    Klein O; Porra RJ
    Hoppe Seylers Z Physiol Chem; 1982 Jun; 363(6):551-62. PubMed ID: 7106702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The C2
    Garg H; Loughlin PC; Willows RD; Chen M
    J Biol Chem; 2017 Nov; 292(47):19279-19289. PubMed ID: 28972142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral signatures of five hydroxymethyl chlorophyll a derivatives chemically derived from chlorophyll b or chlorophyll f.
    Sawicki A; Willows RD; Chen M
    Photosynth Res; 2019 Apr; 140(1):115-127. PubMed ID: 30604202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of 18O-Labelled chlorophyll derivatives at carbonyl oxygen atoms by acidic hydrolysis of the ethylene ketal and acetal.
    Morishita H; Tamiaki H
    Bioorg Med Chem; 2003 Sep; 11(18):4049-57. PubMed ID: 12927867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. (18)O and mass spectrometry in chlorophyll research: Derivation and loss of oxygen atoms at the periphery of the chlorophyll macrocycle during biosynthesis, degradation and adaptation.
    Porra RJ; Scheer H
    Photosynth Res; 2000; 66(3):159-75. PubMed ID: 16228417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of glycolic acid level in higher plants during photorespiration by stable isotope dilution mass spectrometry with double-labeling experiments.
    Jolivet P; Gans P; Triantaphylides C
    Anal Biochem; 1985 May; 147(1):86-91. PubMed ID: 3896026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for a monooxygenase-catalyzed primary process in the catabolism of chlorophyll.
    Curty C; Engel N; Gossauer A
    FEBS Lett; 1995 May; 364(1):41-4. PubMed ID: 7750540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll.
    Ito H; Ohtsuka T; Tanaka A
    J Biol Chem; 1996 Jan; 271(3):1475-9. PubMed ID: 8576141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Labelling of chlorophylls and precursors by [2-14C]glycine and 2-[1-14C]oxoglutarate in Rhodopseudomonas spheroides and Zea mays. Resolution of the C5 and Shemin pathways of 5-aminolaevulinate biosynthesis by thin-layer radiochromatography.
    Porra RJ
    Eur J Biochem; 1986 Apr; 156(1):111-21. PubMed ID: 3485524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The key step in chlorophyll breakdown in higher plants. Cleavage of pheophorbide a macrocycle by a monooxygenase.
    Hörtensteiner S; Wüthrich KL; Matile P; Ongania KH; Kräutler B
    J Biol Chem; 1998 Jun; 273(25):15335-9. PubMed ID: 9624113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of the two carbonyl oxygens of bacteriochlorophyll a. Demonstration of two different pathways for the formation of ring E in Rhodobacter sphaeroides and Roseobacter denitrificans, and a common hydratase mechanism for 3-acetyl group formation.
    Porra RJ; Schäfer W; Gad'on N; Katheder I; Drews G; Scheer H
    Eur J Biochem; 1996 Jul; 239(1):85-92. PubMed ID: 8706723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of cell-differentiation and assembly of photosynthetic proteins during greening of etiolated Zea mays leaves using confocal fluorescence microspectroscopy at liquid-nitrogen temperature.
    Shibata Y; Katoh W; Tahara Y
    Biochim Biophys Acta; 2013 Apr; 1827(4):520-8. PubMed ID: 23416843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorophyll b to chlorophyll a conversion precedes chlorophyll degradation in Hordeum vulgare L.
    Folly P; Engel N
    J Biol Chem; 1999 Jul; 274(31):21811-6. PubMed ID: 10419497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen isotope enrichment (Delta(18)O) reflects yield potential and drought resistance in maize.
    Cabrera-Bosquet L; Sánchez C; Araus JL
    Plant Cell Environ; 2009 Nov; 32(11):1487-99. PubMed ID: 19558406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium-Isotope Fractionation in Chlorophyll-a Extracted from Two Plants with Different Pathways of Carbon Fixation (C3, C4).
    Wrobel K; Karasiński J; Tupys A; Arroyo Negrete MA; Halicz L; Wrobel K; Bulska E
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32260083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Enzymatic system transforming chlorophyllide into chlorophyll in etiolated leaves using exogenous substrates].
    Rudoĭ AB; Vezitskiĭ AIu; Shlyk AA
    Biokhimiia; 1982 May; 47(5):733-9. PubMed ID: 7093375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.