BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8307036)

  • 1. Secondary structure and signal assignments of human-immunodeficiency-virus-1 protease complexed to a novel, structure-based inhibitor.
    Yamazaki T; Nicholson LK; Torchia DA; Stahl SJ; Kaufman JD; Wingfield PT; Domaille PJ; Campbell-Burk S
    Eur J Biochem; 1994 Jan; 219(1-2):707-12. PubMed ID: 8307036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution NMR evidence that the HIV-1 protease catalytic aspartyl groups have different ionization states in the complex formed with the asymmetric drug KNI-272.
    Wang YX; Freedberg DI; Yamazaki T; Wingfield PT; Stahl SJ; Kaufman JD; Kiso Y; Torchia DA
    Biochemistry; 1996 Aug; 35(31):9945-50. PubMed ID: 8756455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional solution structure of the HIV-1 protease complexed with DMP323, a novel cyclic urea-type inhibitor, determined by nuclear magnetic resonance spectroscopy.
    Yamazaki T; Hinck AP; Wang YX; Nicholson LK; Torchia DA; Wingfield P; Stahl SJ; Kaufman JD; Chang CH; Domaille PJ; Lam PY
    Protein Sci; 1996 Mar; 5(3):495-506. PubMed ID: 8868486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping hydration water molecules in the HIV-1 protease/DMP323 complex in solution by NMR spectroscopy.
    Wang YX; Freedberg DI; Grzesiek S; Torchia DA; Wingfield PT; Kaufman JD; Stahl SJ; Chang CH; Hodge CN
    Biochemistry; 1996 Oct; 35(39):12694-704. PubMed ID: 8841113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexibility and function in HIV-1 protease.
    Nicholson LK; Yamazaki T; Torchia DA; Grzesiek S; Bax A; Stahl SJ; Kaufman JD; Wingfield PT; Lam PY; Jadhav PK
    Nat Struct Biol; 1995 Apr; 2(4):274-80. PubMed ID: 7796263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence-specific resonance assignments of the 1H-NMR spectra and structural characterization in solution of the HIV-1 transframe protein p6.
    Beissinger M; Paulus C; Bayer P; Wolf H; Rösch P; Wagner R
    Eur J Biochem; 1996 Apr; 237(2):383-92. PubMed ID: 8647076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1H and 15N magnetic resonance assignments, secondary structure, and tertiary fold of Escherichia coli DnaJ(1-78).
    Hill RB; Flanagan JM; Prestegard JH
    Biochemistry; 1995 Apr; 34(16):5587-96. PubMed ID: 7727420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1H, 15N, and 13C NMR signal assignments of IIIGlc, a signal-transducing protein of Escherichia coli, using three-dimensional triple-resonance techniques.
    Pelton JG; Torchia DA; Meadow ND; Wong CY; Roseman S
    Biochemistry; 1991 Oct; 30(41):10043-57. PubMed ID: 1911770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Backbone assignments and secondary structure of the Escherichia coli enzyme-II mannitol A domain determined by heteronuclear three-dimensional NMR spectroscopy.
    Kroon GJ; Grötzinger J; Dijkstra K; Scheek RM; Robillard GT
    Protein Sci; 1993 Aug; 2(8):1331-41. PubMed ID: 8401218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic analysis of human immunodeficiency virus 1 protease with an analog of the conserved CA-p2 substrate -- interactions with frequently occurring glutamic acid residue at P2' position of substrates.
    Weber IT; Wu J; Adomat J; Harrison RW; Kimmel AR; Wondrak EM; Louis JM
    Eur J Biochem; 1997 Oct; 249(2):523-30. PubMed ID: 9370363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site.
    Feng W; Tejero R; Zimmerman DE; Inouye M; Montelione GT
    Biochemistry; 1998 Aug; 37(31):10881-96. PubMed ID: 9692981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis of HIV-1 protease: generation of mutant proteases with increased stability to autodigestion.
    Tomasselli AG; Mildner AM; Rothrock DJ; Sarcich JL; Lull J; Leone J; Heinrikson R
    Adv Exp Med Biol; 1995; 362():473-7. PubMed ID: 8540360
    [No Abstract]   [Full Text] [Related]  

  • 13. Crystal structure of human immunodeficiency virus (HIV) type 2 protease in complex with a reduced amide inhibitor and comparison with HIV-1 protease structures.
    Tong L; Pav S; Pargellis C; Dô F; Lamarre D; Anderson PC
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8387-91. PubMed ID: 8378311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folded monomer of HIV-1 protease.
    Ishima R; Ghirlando R; Tözsér J; Gronenborn AM; Torchia DA; Louis JM
    J Biol Chem; 2001 Dec; 276(52):49110-6. PubMed ID: 11598128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclopropane-derived peptidomimetics. Design, synthesis, evaluation, and structure of novel HIV-1 protease inhibitors.
    Martin SF; Dorsey GO; Gane T; Hillier MC; Kessler H; Baur M; Mathä B; Erickson JW; Bhat TN; Munshi S; Gulnik SV; Topol IA
    J Med Chem; 1998 May; 41(10):1581-97. PubMed ID: 9572884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flap opening in HIV-1 protease simulated by 'activated' molecular dynamics.
    Collins JR; Burt SK; Erickson JW
    Nat Struct Biol; 1995 Apr; 2(4):334-8. PubMed ID: 7796268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitor-resistant mutants of the HIV-1 aspartic protease.
    Korant BD
    Adv Exp Med Biol; 1995; 362():407-11. PubMed ID: 8540350
    [No Abstract]   [Full Text] [Related]  

  • 18. Preparation and structure-activity relationship of novel P1/P1'-substituted cyclic urea-based human immunodeficiency virus type-1 protease inhibitors.
    Nugiel DA; Jacobs K; Kaltenbach RF; Worley T; Patel M; Meyer DT; Jadhav PK; De Lucca GV; Smyser TE; Klabe RM; Bacheler LT; Rayner MM; Seitz SP
    J Med Chem; 1996 May; 39(11):2156-69. PubMed ID: 8667359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvation effects are responsible for the reduced inhibitor affinity of some HIV-1 PR mutants.
    Sussman F; Villaverde MC; Davis A
    Protein Sci; 1997 May; 6(5):1024-30. PubMed ID: 9144773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The solution structures of mutant calbindin D9k's, as determined by NMR, show that the calcium-binding site can adopt different folds.
    Johansson C; Ullner M; Drakenberg T
    Biochemistry; 1993 Aug; 32(33):8429-38. PubMed ID: 8357794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.