These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 8307104)
1. Ca2+ and Ca2+ channel antagonists in the control of human small cell lung carcinoma cell proliferation. Cattaneo MG; Gullo M; Vicentini LM Eur J Pharmacol; 1993 Nov; 247(3):325-31. PubMed ID: 8307104 [TBL] [Abstract][Full Text] [Related]
2. Dihydropyridine block of omega-agatoxin IVA- and omega-conotoxin GVIA-sensitive Ca2+ channels in rat pituitary melanotropic cells. Mansvelder HD; Stoof JC; Kits KS Eur J Pharmacol; 1996 Sep; 311(2-3):293-304. PubMed ID: 8891612 [TBL] [Abstract][Full Text] [Related]
3. Calcium channel subtypes controlling serotonin release from human small cell lung carcinoma cell lines. Codignola A; Tarroni P; Clementi F; Pollo A; Lovallo M; Carbone E; Sher E J Biol Chem; 1993 Dec; 268(35):26240-7. PubMed ID: 8253745 [TBL] [Abstract][Full Text] [Related]
4. The use of invertebrate peptide toxins to establish Ca2+ channel identity of CA3-CA1 neurotransmission in rat hippocampal slices. Nooney JM; Lodge D Eur J Pharmacol; 1996 Jun; 306(1-3):41-50. PubMed ID: 8813613 [TBL] [Abstract][Full Text] [Related]
5. Effects of N-, P- and Q-type neuronal calcium channel antagonists on mammalian peripheral neurotransmission. Wright CE; Angus JA Br J Pharmacol; 1996 Sep; 119(1):49-56. PubMed ID: 8872356 [TBL] [Abstract][Full Text] [Related]
6. Distinct effects of omega-toxins and various groups of Ca(2+)-entry inhibitors on nicotinic acetylcholine receptor and Ca2+ channels of chromaffin cells. Villarroya M; De la Fuente MT; López MG; Gandía L; García AG Eur J Pharmacol; 1997 Feb; 320(2-3):249-57. PubMed ID: 9059861 [TBL] [Abstract][Full Text] [Related]
7. Regulation of Ca2+ influx by a protein kinase C activator in chromaffin cells: differential role of P/Q- and L-type Ca2+ channels. Sena CM; Santos RM; Boarder MR; Rosário LM Eur J Pharmacol; 1999 Feb; 366(2-3):281-92. PubMed ID: 10082210 [TBL] [Abstract][Full Text] [Related]
8. Lambert-Eaton myasthenic syndrome immunoglobulins react with multiple types of calcium channels in small-cell lung carcinoma. Meriney SD; Hulsizer SC; Lennon VA; Grinnell AD Ann Neurol; 1996 Nov; 40(5):739-49. PubMed ID: 8957015 [TBL] [Abstract][Full Text] [Related]
9. Functional characterization of ion permeation pathway in the N-type Ca2+ channel. Wakamori M; Strobeck M; Niidome T; Teramoto T; Imoto K; Mori Y J Neurophysiol; 1998 Feb; 79(2):622-34. PubMed ID: 9463426 [TBL] [Abstract][Full Text] [Related]
10. R- and L-type Ca2+ channels are insensitive to eliprodil in rat cultured cerebellar granule neurons. Biton B; Godet D; Granger P; Avenet P Eur J Pharmacol; 1997 Apr; 323(2-3):277-81. PubMed ID: 9128850 [TBL] [Abstract][Full Text] [Related]
11. Calcium channels involved in synaptic transmission at the mature and regenerating mouse neuromuscular junction. Katz E; Ferro PA; Weisz G; Uchitel OD J Physiol; 1996 Dec; 497 ( Pt 3)(Pt 3):687-97. PubMed ID: 9003554 [TBL] [Abstract][Full Text] [Related]
12. High expression of the R-type voltage-gated Ca2+ channel and its involvement in Ca2+-dependent gonadotropin-releasing hormone release in GT1-7 cells. Watanabe M; Sakuma Y; Kato M Endocrinology; 2004 May; 145(5):2375-83. PubMed ID: 14736732 [TBL] [Abstract][Full Text] [Related]
13. A role for Q type Ca2+ channels in neurotransmission in the rat urinary bladder. Frew R; Lundy PM Br J Pharmacol; 1995 Sep; 116(1):1595-8. PubMed ID: 8564224 [TBL] [Abstract][Full Text] [Related]
14. Different contributions of voltage-sensitive Ca2+ channels to histamine-induced catecholamine release and tyrosine hydroxylase activation in bovine adrenal chromaffin cells. O'Farrell M; Marley PD Cell Calcium; 1999 Mar; 25(3):209-17. PubMed ID: 10378082 [TBL] [Abstract][Full Text] [Related]
15. The nonpeptide alpha-eudexp6l from Juniperus virginiana Linn. (Cupressaceae) inhibits omega-agatoxin IVA-sensitive Ca2+ currents and synaptosomal 45Ca2+ uptake. Asakura K; Kanemasa T; Minagawa K; Kagawa K; Ninomiya M Brain Res; 1999 Mar; 823(1-2):169-76. PubMed ID: 10095023 [TBL] [Abstract][Full Text] [Related]
16. Pharmacological dissection of calcium channel subtype-related components of strontium inflow in large mossy fiber boutons of mouse hippocampus. Tokunaga T; Miyazaki K; Koseki M; Mobarakeh JI; Ishizuka T; Yawo H Hippocampus; 2004; 14(5):570-85. PubMed ID: 15301435 [TBL] [Abstract][Full Text] [Related]
17. Presynaptic inhibition of synaptic transmission in the rat hippocampus by activation of muscarinic receptors: involvement of presynaptic calcium influx. Qian J; Saggau P Br J Pharmacol; 1997 Oct; 122(3):511-9. PubMed ID: 9351508 [TBL] [Abstract][Full Text] [Related]
18. Effects of Ca2+ channel blocker neurotoxins on transmitter release and presynaptic currents at the mouse neuromuscular junction. Katz E; Protti DA; Ferro PA; Rosato Siri MD; Uchitel OD Br J Pharmacol; 1997 Aug; 121(8):1531-40. PubMed ID: 9283685 [TBL] [Abstract][Full Text] [Related]
19. Separation of calcium channel current components in mouse chromaffin cells superfused with low- and high-barium solutions. Hernández-Guijo JM; de Pascual R; García AG; Gandía L Pflugers Arch; 1998 Jun; 436(1):75-82. PubMed ID: 9560449 [TBL] [Abstract][Full Text] [Related]
20. Control of glutamate release by calcium channels and kappa-opioid receptors in rodent and primate striatum. Hill MP; Brotchie JM Br J Pharmacol; 1999 May; 127(1):275-83. PubMed ID: 10369483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]