These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8307106)

  • 21. Effects of gabapentin on release of gamma-aminobutyric acid from slices of rat neostriatum.
    Götz E; Feuerstein TJ; Lais A; Meyer DK
    Arzneimittelforschung; 1993 Jun; 43(6):636-8. PubMed ID: 8394711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of uptake, steady-state currents, and transient charge movements generated by the neuronal GABA transporter by various anticonvulsant drugs.
    Eckstein-Ludwig U; Fei J; Schwarz W
    Br J Pharmacol; 1999 Sep; 128(1):92-102. PubMed ID: 10498839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of action of gabapentin.
    Taylor CP
    Rev Neurol (Paris); 1997; 153 Suppl 1():S39-45. PubMed ID: 9686247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium channel alpha(2)delta subunits-structure and Gabapentin binding.
    Marais E; Klugbauer N; Hofmann F
    Mol Pharmacol; 2001 May; 59(5):1243-8. PubMed ID: 11306709
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport of pregabalin in rat intestine and Caco-2 monolayers.
    Jezyk N; Li C; Stewart BH; Wu X; Bockbrader HN; Fleisher D
    Pharm Res; 1999 Apr; 16(4):519-26. PubMed ID: 10227706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro study on the interaction of Valeriana officinalis L. extracts and their amino acids on GABAA receptor in rat brain.
    Cavadas C; Araújo I; Cotrim MD; Amaral T; Cunha AP; Macedo T; Ribeiro CF
    Arzneimittelforschung; 1995 Jul; 45(7):753-5. PubMed ID: 8573216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Allosteric modulation of [(3)H]gabapentin binding by ruthenium red.
    Taylor MT; Bonhaus DW
    Neuropharmacology; 2000 Apr; 39(7):1267-73. PubMed ID: 10760368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The interaction of substituted benzamides with brain benzodiazepine binding sites in vitro.
    Horton RW; Lowther S; Chivers J; Jenner P; Marsden CD; Testa B
    Br J Pharmacol; 1988 Aug; 94(4):1234-40. PubMed ID: 2850059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of [3H]thiocolchicoside binding sites in rat spinal cord and cerebral cortex.
    Balduini W; Cimino M; Depoortere H; Cattabeni F
    Eur J Pharmacol; 1999 Jul; 376(1-2):149-57. PubMed ID: 10440100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gabapentin inhibits presynaptic Ca(2+) influx and synaptic transmission in rat hippocampus and neocortex.
    van Hooft JA; Dougherty JJ; Endeman D; Nichols RA; Wadman WJ
    Eur J Pharmacol; 2002 Aug; 449(3):221-28. PubMed ID: 12167463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural requirement of the calcium-channel subunit alpha2delta for gabapentin binding.
    Wang M; Offord J; Oxender DL; Su TZ
    Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):313-20. PubMed ID: 10455017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disposition of gabapentin (neurontin) in mice, rats, dogs, and monkeys.
    Radulovic LL; Türck D; von Hodenberg A; Vollmer KO; McNally WP; DeHart PD; Hanson BJ; Bockbrader HN; Chang T
    Drug Metab Dispos; 1995 Apr; 23(4):441-8. PubMed ID: 7600909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gabapentin may inhibit synaptic transmission in the mouse spinal cord dorsal horn through a preferential block of P/Q-type Ca2+ channels.
    Bayer K; Ahmadi S; Zeilhofer HU
    Neuropharmacology; 2004 Apr; 46(5):743-9. PubMed ID: 14996552
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with [3H]5-HT, [3H]8-OH-DPAT, (-)[125I]iodocyanopindolol, [3H]mesulergine and [3H]ketanserin.
    Hoyer D; Engel G; Kalkman HO
    Eur J Pharmacol; 1985 Nov; 118(1-2):13-23. PubMed ID: 2935410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intestinal absorption of gabapentin in rats.
    Maurer HH; Rump AF
    Arzneimittelforschung; 1991 Feb; 41(2):104-6. PubMed ID: 2043169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of specific, high-affinity binding sites for L-[3H]glutamic acid in rat brain membranes.
    Biziere K; Thompson H; Coyle JT
    Brain Res; 1980 Feb; 183(2):421-33. PubMed ID: 7353147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential treatment of amyotrophic lateral sclerosis with gabapentin: a hypothesis.
    Welty DF; Schielke GP; Rothstein JD
    Ann Pharmacother; 1995 Nov; 29(11):1164-7. PubMed ID: 8573965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Saturable transport of gabapentin at the blood-brain barrier.
    Luer MS; Hamani C; Dujovny M; Gidal B; Cwik M; Deyo K; Fischer JH
    Neurol Res; 1999 Sep; 21(6):559-62. PubMed ID: 10491815
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regionally different N-methyl-D-aspartate receptors distinguished by ligand binding and quantitative autoradiography of [3H]-CGP 39653 in rat brain.
    Mugnaini M; van Amsterdam FT; Ratti E; Trist DG; Bowery NG
    Br J Pharmacol; 1996 Nov; 119(5):819-28. PubMed ID: 8922727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of acromelic acid A on the binding of [3H]-kainic acid and [3H]-AMPA to rat brain synaptic plasma membranes.
    Smith AL; McIlhinney RA
    Br J Pharmacol; 1992 Jan; 105(1):83-6. PubMed ID: 1375859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.