These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8307196)

  • 1. Superoxide production by cytochrome b559. Mechanism of cytosol-independent activation.
    Koshkin V; Pick E
    FEBS Lett; 1994 Feb; 338(3):285-9. PubMed ID: 8307196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of superoxide by purified and relipidated cytochrome b559 in the absence of cytosolic activators.
    Koshkin V; Pick E
    FEBS Lett; 1993 Jul; 327(1):57-62. PubMed ID: 8392946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic and anaerobic functioning of superoxide-producing cytochrome b-559 reconstituted with phospholipids.
    Koshkin V
    Biochim Biophys Acta; 1995 Dec; 1232(3):225-9. PubMed ID: 8534675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The membrane-associated component of the amphiphile-activated, cytosol-dependent superoxide-forming NADPH oxidase of macrophages is identical to cytochrome b559.
    Knoller S; Shpungin S; Pick E
    J Biol Chem; 1991 Feb; 266(5):2795-804. PubMed ID: 1847135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transfer in the superoxide-generating NADPH oxidase complex reconstituted in vitro.
    Koshkin V; Lotan O; Pick E
    Biochim Biophys Acta; 1997 Apr; 1319(2-3):139-46. PubMed ID: 9131041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes.
    Segal AW; West I; Wientjes F; Nugent JH; Chavan AJ; Haley B; Garcia RC; Rosen H; Scrace G
    Biochem J; 1992 Jun; 284 ( Pt 3)(Pt 3):781-8. PubMed ID: 1320378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the flavoprotein nature of the redox core of neutrophil NADPH oxidase.
    Escriou V; Laporte F; Vignais PV
    Biochem Biophys Res Commun; 1996 Feb; 219(3):930-5. PubMed ID: 8645281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system.
    Clark RA; Leidal KG; Pearson DW; Nauseef WM
    J Biol Chem; 1987 Mar; 262(9):4065-74. PubMed ID: 3031060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cytosolic component p47(phox) is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production.
    Koshkin V; Lotan O; Pick E
    J Biol Chem; 1996 Nov; 271(48):30326-9. PubMed ID: 8939991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of FAD to cytochrome b558 is facilitated during activation of the phagocyte NADPH oxidase, leading to superoxide production.
    Hashida S; Yuzawa S; Suzuki NN; Fujioka Y; Takikawa T; Sumimoto H; Inagaki F; Fujii H
    J Biol Chem; 2004 Jun; 279(25):26378-86. PubMed ID: 15102859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of the superoxide forming NADPH oxidase in a cell-free system by sodium dodecyl sulfate. Characterization of the membrane-associated component.
    Pick E; Bromberg Y; Shpungin S; Gadba R
    J Biol Chem; 1987 Dec; 262(34):16476-83. PubMed ID: 2824496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of superoxide-forming NADPH oxidase activity with cytochrome b558 purified from porcine neutrophils. Requirement of a membrane-bound flavin enzyme for reconstitution of activity.
    Miki T; Yoshida LS; Kakinuma K
    J Biol Chem; 1992 Sep; 267(26):18695-701. PubMed ID: 1326533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the electron-transfer mechanism of the human neutrophil NADPH oxidase.
    Ellis JA; Cross AR; Jones OT
    Biochem J; 1989 Sep; 262(2):575-9. PubMed ID: 2553003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and electrogenic properties of superoxide-producing cytochrome b-559 incorporated into liposomes.
    Koshkin V
    Biochim Biophys Acta; 1995 May; 1229(3):329-33. PubMed ID: 7748884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The superoxide-generating oxidase of leucocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilized preparations.
    Cross AR; Parkinson JF; Jones OT
    Biochem J; 1984 Oct; 223(2):337-44. PubMed ID: 6497852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the human neutrophil NADPH oxidase results in coupling of electron carrier function between ubiquinone-10 and cytochrome b559.
    Gabig TG; Lefker BA
    J Biol Chem; 1985 Apr; 260(7):3991-5. PubMed ID: 2984192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of a third cytosolic component of the superoxide-generating NADPH oxidase of macrophages.
    Abo A; Pick E
    J Biol Chem; 1991 Dec; 266(35):23577-85. PubMed ID: 1660877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory response of phagocytes: terminal NADPH oxidase and the mechanisms of its activation.
    Rossi F; Bellavite P; Papini E
    Ciba Found Symp; 1986; 118():172-95. PubMed ID: 3015513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron transfer reactions in the NADPH oxidase system of neutrophils--involvement of an NADPH-cytochrome c reductase in the oxidase system.
    Fujii H; Kakinuma K
    Biochim Biophys Acta; 1991 Nov; 1095(3):201-9. PubMed ID: 1659905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Certain lymphoid cells contain the membrane-associated component of the phagocyte-specific NADPH oxidase.
    Pick E; Gadba R
    J Immunol; 1988 Mar; 140(5):1611-7. PubMed ID: 2831270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.