BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8307196)

  • 1. Superoxide production by cytochrome b559. Mechanism of cytosol-independent activation.
    Koshkin V; Pick E
    FEBS Lett; 1994 Feb; 338(3):285-9. PubMed ID: 8307196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of superoxide by purified and relipidated cytochrome b559 in the absence of cytosolic activators.
    Koshkin V; Pick E
    FEBS Lett; 1993 Jul; 327(1):57-62. PubMed ID: 8392946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic and anaerobic functioning of superoxide-producing cytochrome b-559 reconstituted with phospholipids.
    Koshkin V
    Biochim Biophys Acta; 1995 Dec; 1232(3):225-9. PubMed ID: 8534675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The membrane-associated component of the amphiphile-activated, cytosol-dependent superoxide-forming NADPH oxidase of macrophages is identical to cytochrome b559.
    Knoller S; Shpungin S; Pick E
    J Biol Chem; 1991 Feb; 266(5):2795-804. PubMed ID: 1847135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transfer in the superoxide-generating NADPH oxidase complex reconstituted in vitro.
    Koshkin V; Lotan O; Pick E
    Biochim Biophys Acta; 1997 Apr; 1319(2-3):139-46. PubMed ID: 9131041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes.
    Segal AW; West I; Wientjes F; Nugent JH; Chavan AJ; Haley B; Garcia RC; Rosen H; Scrace G
    Biochem J; 1992 Jun; 284 ( Pt 3)(Pt 3):781-8. PubMed ID: 1320378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the flavoprotein nature of the redox core of neutrophil NADPH oxidase.
    Escriou V; Laporte F; Vignais PV
    Biochem Biophys Res Commun; 1996 Feb; 219(3):930-5. PubMed ID: 8645281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system.
    Clark RA; Leidal KG; Pearson DW; Nauseef WM
    J Biol Chem; 1987 Mar; 262(9):4065-74. PubMed ID: 3031060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cytosolic component p47(phox) is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production.
    Koshkin V; Lotan O; Pick E
    J Biol Chem; 1996 Nov; 271(48):30326-9. PubMed ID: 8939991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of FAD to cytochrome b558 is facilitated during activation of the phagocyte NADPH oxidase, leading to superoxide production.
    Hashida S; Yuzawa S; Suzuki NN; Fujioka Y; Takikawa T; Sumimoto H; Inagaki F; Fujii H
    J Biol Chem; 2004 Jun; 279(25):26378-86. PubMed ID: 15102859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of the superoxide forming NADPH oxidase in a cell-free system by sodium dodecyl sulfate. Characterization of the membrane-associated component.
    Pick E; Bromberg Y; Shpungin S; Gadba R
    J Biol Chem; 1987 Dec; 262(34):16476-83. PubMed ID: 2824496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of superoxide-forming NADPH oxidase activity with cytochrome b558 purified from porcine neutrophils. Requirement of a membrane-bound flavin enzyme for reconstitution of activity.
    Miki T; Yoshida LS; Kakinuma K
    J Biol Chem; 1992 Sep; 267(26):18695-701. PubMed ID: 1326533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the electron-transfer mechanism of the human neutrophil NADPH oxidase.
    Ellis JA; Cross AR; Jones OT
    Biochem J; 1989 Sep; 262(2):575-9. PubMed ID: 2553003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and electrogenic properties of superoxide-producing cytochrome b-559 incorporated into liposomes.
    Koshkin V
    Biochim Biophys Acta; 1995 May; 1229(3):329-33. PubMed ID: 7748884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The superoxide-generating oxidase of leucocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilized preparations.
    Cross AR; Parkinson JF; Jones OT
    Biochem J; 1984 Oct; 223(2):337-44. PubMed ID: 6497852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the human neutrophil NADPH oxidase results in coupling of electron carrier function between ubiquinone-10 and cytochrome b559.
    Gabig TG; Lefker BA
    J Biol Chem; 1985 Apr; 260(7):3991-5. PubMed ID: 2984192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of a third cytosolic component of the superoxide-generating NADPH oxidase of macrophages.
    Abo A; Pick E
    J Biol Chem; 1991 Dec; 266(35):23577-85. PubMed ID: 1660877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory response of phagocytes: terminal NADPH oxidase and the mechanisms of its activation.
    Rossi F; Bellavite P; Papini E
    Ciba Found Symp; 1986; 118():172-95. PubMed ID: 3015513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron transfer reactions in the NADPH oxidase system of neutrophils--involvement of an NADPH-cytochrome c reductase in the oxidase system.
    Fujii H; Kakinuma K
    Biochim Biophys Acta; 1991 Nov; 1095(3):201-9. PubMed ID: 1659905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Certain lymphoid cells contain the membrane-associated component of the phagocyte-specific NADPH oxidase.
    Pick E; Gadba R
    J Immunol; 1988 Mar; 140(5):1611-7. PubMed ID: 2831270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.