These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 8307337)

  • 1. Ends-in vs. ends-out recombination in yeast.
    Hastings PJ; McGill C; Shafer B; Strathern JN
    Genetics; 1993 Dec; 135(4):973-80. PubMed ID: 8307337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of non-homology between recombining DNA sequences on double-strand break repair in Saccharomyces cerevisiae.
    Glasunov A; Frankenberg-Schwager M; Frankenberg D
    Mol Gen Genet; 1995 Apr; 247(1):55-60. PubMed ID: 7715604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of recombination between homologous and diverged DNAs by double-strand gaps and breaks and role of mismatch repair.
    Priebe SD; Westmoreland J; Nilsson-Tillgren T; Resnick MA
    Mol Cell Biol; 1994 Jul; 14(7):4802-14. PubMed ID: 8007979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Role of the RAD57 gene in the repair of double-stranded DNA gaps in the yeast Saccharomyces cerevisiae].
    Glazer VM; Glazunov AV
    Genetika; 1997 Sep; 33(9):1221-8. PubMed ID: 9445816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast recombination: the association between double-strand gap repair and crossing-over.
    Orr-Weaver TL; Szostak JW
    Proc Natl Acad Sci U S A; 1983 Jul; 80(14):4417-21. PubMed ID: 6308623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synapsis-mediated fusion of free DNA ends forms inverted dimer plasmids in yeast.
    Kunes S; Botstein D; Fox MS
    Genetics; 1990 Jan; 124(1):67-80. PubMed ID: 2407606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single strand and double strand DNA damage-induced reciprocal recombination in yeast. Dependence on nucleotide excision repair and RAD1 recombination.
    Saffran WA; Greenberg RB; Thaler-Scheer MS; Jones MM
    Nucleic Acids Res; 1994 Jul; 22(14):2823-9. PubMed ID: 8052537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of multiple plasmid recombination in Saccharomyces cerevisiae by psoralen reaction and double strand breaks.
    Saffran WA; Smith ED; Chan SK
    Nucleic Acids Res; 1991 Oct; 19(20):5681-7. PubMed ID: 1945844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmid construction by homologous recombination in yeast.
    Ma H; Kunes S; Schatz PJ; Botstein D
    Gene; 1987; 58(2-3):201-16. PubMed ID: 2828185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmid-mediated induction of recombination in yeast.
    Silberman R; Kupiec M
    Genetics; 1994 May; 137(1):41-8. PubMed ID: 8056321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yeast transformation: a model system for the study of recombination.
    Orr-Weaver TL; Szostak JW; Rothstein RJ
    Proc Natl Acad Sci U S A; 1981 Oct; 78(10):6354-8. PubMed ID: 6273866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple tandem integrations of transforming DNA sequences in yeast chromosomes suggest a mechanism for integrative transformation by homologous recombination.
    Plessis A; Dujon B
    Gene; 1993 Nov; 134(1):41-50. PubMed ID: 8244029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae.
    Mezard C; Nicolas A
    Mol Cell Biol; 1994 Feb; 14(2):1278-92. PubMed ID: 8289807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of yeast with linearized plasmid DNA. Formation of inverted dimers and recombinant plasmid products.
    Kunes S; Botstein D; Fox MS
    J Mol Biol; 1985 Aug; 184(3):375-87. PubMed ID: 3900413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A model system for the study of repair of DNA double-strand breaks in Saccharomyces cerevisiae].
    Glazunov AV; Glazer VM; Perera DR; Boreĭko AV
    Mol Gen Mikrobiol Virusol; 1987 Aug; (8):19-25. PubMed ID: 2825006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homology search and choice of homologous partner during mitotic recombination.
    Inbar O; Kupiec M
    Mol Cell Biol; 1999 Jun; 19(6):4134-42. PubMed ID: 10330153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Donation of information to the unbroken chromosome in double-strand break repair.
    Roitgrund C; Steinlauf R; Kupiec M
    Curr Genet; 1993; 23(5-6):414-22. PubMed ID: 8319297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing.
    Storici F; Snipe JR; Chan GK; Gordenin DA; Resnick MA
    Mol Cell Biol; 2006 Oct; 26(20):7645-57. PubMed ID: 16908537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA homology and chromosome stability: a sensitive yeast genetic system for identifying double-stranded DNA damage.
    Resnick MA; Nilsson-Tillgren T
    Prog Clin Biol Res; 1990; 340B():363-9. PubMed ID: 2203015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The RAD5 gene product is involved in the avoidance of non-homologous end-joining of DNA double strand breaks in the yeast Saccharomyces cerevisiae.
    Ahne F; Jha B; Eckardt-Schupp F
    Nucleic Acids Res; 1997 Feb; 25(4):743-9. PubMed ID: 9016623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.