These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8307596)

  • 21. Compact variable-temperature scanning force microscope.
    Chuang TM; de Lozanne A
    Rev Sci Instrum; 2007 May; 78(5):053710. PubMed ID: 17552828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolating Myofibrils from Skeletal Muscle Biopsies and Determining Contractile Function with a Nano-Newton Resolution Force Transducer.
    van de Locht M; de Winter JM; Rassier DE; Helmes MHB; Ottenheijm CAC
    J Vis Exp; 2020 May; (159):. PubMed ID: 32449720
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo.
    Liao KC; Hogen-Esch T; Richmond FJ; Marcu L; Clifton W; Loeb GE
    Biosens Bioelectron; 2008 May; 23(10):1458-65. PubMed ID: 18304798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Subsurface Raman spectroscopy and mapping using a globally illuminated non-confocal fiber-optic array probe in the presence of Raman photon migration.
    Schulmerich MV; Finney WF; Fredricks RA; Morris MD
    Appl Spectrosc; 2006 Feb; 60(2):109-14. PubMed ID: 16542561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Force transmission in skeletal muscle: from actomyosin to external tendons.
    Patel TJ; Lieber RL
    Exerc Sport Sci Rev; 1997; 25():321-63. PubMed ID: 9213097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Principles of construction of intelligent devices for early cataract diagnosis on the basis of incoherent fiber-optic converters].
    Anshakov GA; Zak EA; Ponamarev PE
    Med Tekh; 2007; (2):36-8. PubMed ID: 17650644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total reflection.
    Matsuura Y; Kino S; Katagiri T
    Appl Opt; 2009 Oct; 48(28):5396-400. PubMed ID: 19798380
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced efficiency of a capillary-based biosensor over an optical fiber biosensor for detecting calpastatin.
    Bratcher CL; Grant SA; Vassalli JT; Lorenzen CL
    Biosens Bioelectron; 2008 Jun; 23(11):1674-9. PubMed ID: 18343100
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies.
    Ravary B; Pourcelot P; Bortolussi C; Konieczka S; Crevier-Denoix N
    Clin Biomech (Bristol, Avon); 2004 Jun; 19(5):433-47. PubMed ID: 15182978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic force measurement at the microgram level, with application to myofibrils of striated muscle.
    Thorson J; White DC
    IEEE Trans Biomed Eng; 1975 Jul; 22(4):293-9. PubMed ID: 1193611
    [No Abstract]   [Full Text] [Related]  

  • 31. Fiber-optic biosensor to assess circulating phagocyte activity by chemiluminescence.
    Magrisso M; Etzion O; Pilch G; Novodvoretz A; Perez-Avraham G; Schlaeffer F; Marks R
    Biosens Bioelectron; 2006 Jan; 21(7):1210-8. PubMed ID: 15978799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain.
    Chavko M; Koller WA; Prusaczyk WK; McCarron RM
    J Neurosci Methods; 2007 Jan; 159(2):277-81. PubMed ID: 16949675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time frequency domain temperature and oxygen sensor with a single optical fiber.
    Liao SC; Xu Z; Izatt JA; Alcala JR
    IEEE Trans Biomed Eng; 1997 Nov; 44(11):1114-21. PubMed ID: 9353991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Patient isolation in multichannel bioelectric recordings by digital transmission through a single optical fiber.
    MettingVanRijn AC; Kuiper AP; Linnenbank AC; Grimbergen CA
    IEEE Trans Biomed Eng; 1993 Mar; 40(3):302-8. PubMed ID: 8335335
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The use of fiber optics for assessing the engorgement of the brain tissues].
    Zagvazdin IuS; Sevbo SD; Fedotkina TV; Nalbandian SG
    Fiziol Zh SSSR Im I M Sechenova; 1991 Jun; 77(6):135-8. PubMed ID: 1665812
    [No Abstract]   [Full Text] [Related]  

  • 36. Usefulness of electromagnetic induction type of force transducer and actuator for myofibril mechanics.
    Kimura K; Abe T; Phan KN; Kobayashi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():566-9. PubMed ID: 23365955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new transducer based on the evanescent field effect for high-resolution displacement and force measurements.
    Knobloch KU; Vogel M; Fink RH
    Pflugers Arch; 2000 Nov; 441(1):32-8. PubMed ID: 11205059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A fiber optic system for measuring dynamic mechanical properties of embryonic tissues.
    Moore SW
    IEEE Trans Biomed Eng; 1994 Jan; 41(1):45-50. PubMed ID: 8200667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new transducer system for direct motor unit force measurement.
    Turkawski SJ; van Ruijven LJ; van Kuyen M; Schreurs AW; Weijs WA
    J Biomech; 1996 Nov; 29(11):1491-6. PubMed ID: 8894930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fiber-optic pressure transducer for use near MR magnetic fields.
    Roos CF; Carroll FE
    Radiology; 1985 Aug; 156(2):548. PubMed ID: 4011924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.