BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 8307846)

  • 1. Faster O2 uptake kinetics at onset of supine exercise with than without lower body negative pressure.
    Hughson RL; Cochrane JE; Butler GC
    J Appl Physiol (1985); 1993 Nov; 75(5):1962-7. PubMed ID: 8307846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alveolar oxygen uptake and femoral artery blood flow dynamics in upright and supine leg exercise in humans.
    MacDonald MJ; Shoemaker JK; Tschakovsky ME; Hughson RL
    J Appl Physiol (1985); 1998 Nov; 85(5):1622-8. PubMed ID: 9804561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of ventilation and gas exchange during supine and upright cycle exercise.
    Hughson RL; Xing HC; Borkhoff C; Butler GC
    Eur J Appl Physiol Occup Physiol; 1991; 63(3-4):300-7. PubMed ID: 1761025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Priming exercise speeds pulmonary O2 uptake kinetics during supine "work-to-work" high-intensity cycle exercise.
    DiMenna FJ; Wilkerson DP; Burnley M; Bailey SJ; Jones AM
    J Appl Physiol (1985); 2010 Feb; 108(2):283-92. PubMed ID: 19959765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of "priming" exercise on pulmonary O2 uptake and muscle deoxygenation kinetics during heavy-intensity cycle exercise in the supine and upright positions.
    Jones AM; Berger NJ; Wilkerson DP; Roberts CL
    J Appl Physiol (1985); 2006 Nov; 101(5):1432-41. PubMed ID: 16857860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supine exercise during lower body negative pressure effectively simulates upright exercise in normal gravity.
    Murthy G; Watenpaugh DE; Ballard RE; Hargens AR
    J Appl Physiol (1985); 1994 Jun; 76(6):2742-8. PubMed ID: 7928909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supine lower body negative pressure exercise simulates metabolic and kinetic features of upright exercise.
    Boda WL; Watenpaugh DE; Ballard RE; Hargens AR
    J Appl Physiol (1985); 2000 Aug; 89(2):649-54. PubMed ID: 10926650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced arterial O2 saturation during supine exercise in highly trained cyclists.
    Pedersen PK; Mandøe H; Jensen K; Andersen C; Madsen K
    Acta Physiol Scand; 1996 Dec; 158(4):325-31. PubMed ID: 8971253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postural effect on cardiac output, oxygen uptake and lactate during cycle exercise of varying intensity.
    Leyk D; Essfeld D; Hoffmann U; Wunderlich HG; Baum K; Stegemann J
    Eur J Appl Physiol Occup Physiol; 1994; 68(1):30-5. PubMed ID: 8162920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen uptake kinetics of constant-load work: upright vs. supine exercise.
    Convertino VA; Goldwater DJ; Sandler H
    Aviat Space Environ Med; 1984 Jun; 55(6):501-6. PubMed ID: 6466245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of oxygen uptake during supine and upright heavy exercise.
    Koga S; Shiojiri T; Shibasaki M; Kondo N; Fukuba Y; Barstow TJ
    J Appl Physiol (1985); 1999 Jul; 87(1):253-60. PubMed ID: 10409583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of cardiovascular and biomechanical parameters of supine lower body negative pressure and upright lower body positive pressure to simulate activity in 1/6 G and 3/8 G.
    Schlabs T; Rosales-Velderrain A; Ruckstuhl H; Stahn AC; Hargens AR
    J Appl Physiol (1985); 2013 Jul; 115(2):275-84. PubMed ID: 23640597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supine exercise restores arterial blood pressure and skin blood flow despite dehydration and hyperthermia.
    González-Alonso J; Mora-Rodríguez R; Coyle EF
    Am J Physiol; 1999 Aug; 277(2):H576-83. PubMed ID: 10444482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acceleration of VO2 kinetics in heavy submaximal exercise by hyperoxia and prior high-intensity exercise.
    Macdonald M; Pedersen PK; Hughson RL
    J Appl Physiol (1985); 1997 Oct; 83(4):1318-25. PubMed ID: 9338442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of individual oxygen uptake on-step transients from frequency responses.
    Hoffmann U; Essfeld D; Leyk D; Wunderlich HG; Stegemann J
    Eur J Appl Physiol Occup Physiol; 1994; 69(2):93-7. PubMed ID: 7805677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of body position on muscle deoxy[Hb+Mb] during ramp cycle exercise.
    DiMenna FJ; Bailey SJ; Jones AM
    Respir Physiol Neurobiol; 2010 Sep; 173(2):138-45. PubMed ID: 20654739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of body position on exercise capacity and pulmonary vascular pressure-flow relationships.
    Forton K; Motoji Y; Deboeck G; Faoro V; Naeije R
    J Appl Physiol (1985); 2016 Nov; 121(5):1145-1150. PubMed ID: 27763874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time courses of cardiac output and oxygen uptake following stepwise increases in exercise intensity.
    Leyk D; Hoffmann U; Baum K; Essfeld D
    Int J Sports Med; 1995 Aug; 16(6):357-63. PubMed ID: 7591385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac output, oxygen consumption and arteriovenous oxygen difference following a sudden rise in exercise level in humans.
    De Cort SC; Innes JA; Barstow TJ; Guz A
    J Physiol; 1991 Sep; 441():501-12. PubMed ID: 1816384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VO2 kinetics of constant-load exercise following bed-rest-induced deconditioning.
    Convertino VA; Goldwater DJ; Sandler H
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Nov; 57(5):1545-50. PubMed ID: 6520051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.