BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8307978)

  • 41. Accelerated refolding of subtilisin BPN' by tertiary-structure-forming mutants of its propeptide.
    Kojima S; Yanai H; Miura K
    J Biochem; 2001 Oct; 130(4):471-4. PubMed ID: 11574065
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process.
    Zhu XL; Ohta Y; Jordan F; Inouye M
    Nature; 1989 Jun; 339(6224):483-4. PubMed ID: 2657436
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Most of the propeptide is dispensable for stability and autoprocessing of the zymogen of the germination protease of spores of Bacillus species.
    Pedersen LB; Nessi C; Setlow P
    J Bacteriol; 1997 Mar; 179(5):1824-7. PubMed ID: 9045848
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide.
    You L; Arnold FH
    Protein Eng; 1996 Jan; 9(1):77-83. PubMed ID: 9053906
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic serine protease.
    Takagi H; Takahashi T; Momose H; Inouye M; Maeda Y; Matsuzawa H; Ohta T
    J Biol Chem; 1990 Apr; 265(12):6874-8. PubMed ID: 2108962
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new approach for alteration of protease functions: pro-sequence engineering.
    Takagi H; Takahashi M
    Appl Microbiol Biotechnol; 2003 Nov; 63(1):1-9. PubMed ID: 12879301
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional characterization of the propeptide of Plasmodium falciparum subtilisin-like protease-1.
    Jean L; Hackett F; Martin SR; Blackman MJ
    J Biol Chem; 2003 Aug; 278(31):28572-9. PubMed ID: 12764150
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Subtilisin from psychrophilic antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold.
    Narinx E; Baise E; Gerday C
    Protein Eng; 1997 Nov; 10(11):1271-9. PubMed ID: 9514115
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Determination of the signal peptidase cleavage site in the preprosubtilisin of Bacillus subtilis.
    Wong SL; Doi RH
    J Biol Chem; 1986 Aug; 261(22):10176-81. PubMed ID: 3090033
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Requirement of insertion sequence IS1 for thermal adaptation of Pro-Tk-subtilisin from hyperthermophilic archaeon.
    Uehara R; Tanaka S; Takano K; Koga Y; Kanaya S
    Extremophiles; 2012 Nov; 16(6):841-51. PubMed ID: 22996828
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Restriction of substrate specificity of subtilisin E by introduction of a side chain into a conserved glycine residue.
    Takagi H; Maeda T; Ohtsu I; Tsai YC; Nakamori S
    FEBS Lett; 1996 Oct; 395(2-3):127-32. PubMed ID: 8898079
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ca2+-dependent maturation of subtilisin from a hyperthermophilic archaeon, Thermococcus kodakaraensis: the propeptide is a potent inhibitor of the mature domain but is not required for its folding.
    Pulido M; Saito K; Tanaka S; Koga Y; Morikawa M; Takano K; Kanaya S
    Appl Environ Microbiol; 2006 Jun; 72(6):4154-62. PubMed ID: 16751527
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Processing and sorting of the prohormone convertase 2 propeptide.
    Muller L; Cameron A; Fortenberry Y; Apletalina EV; Lindberg I
    J Biol Chem; 2000 Dec; 275(50):39213-22. PubMed ID: 10995742
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural basis for the autoprocessing of zinc metalloproteases in the thermolysin family.
    Gao X; Wang J; Yu DQ; Bian F; Xie BB; Chen XL; Zhou BC; Lai LH; Wang ZX; Wu JW; Zhang YZ
    Proc Natl Acad Sci U S A; 2010 Oct; 107(41):17569-74. PubMed ID: 20876133
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing.
    Vernet T; Khouri HE; Laflamme P; Tessier DC; Musil R; Gour-Salin BJ; Storer AC; Thomas DY
    J Biol Chem; 1991 Nov; 266(32):21451-7. PubMed ID: 1939177
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Requirement of left-handed glycine residue for high stability of the Tk-subtilisin propeptide as revealed by mutational and crystallographic analyses.
    Pulido MA; Tanaka S; Sringiew C; You DJ; Matsumura H; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2007 Dec; 374(5):1359-73. PubMed ID: 17988685
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular basis for auto- and hetero-catalytic maturation of a thermostable subtilase from thermophilic Bacillus sp. WF146.
    Zhu H; Xu BL; Liang X; Yang YR; Tang XF; Tang B
    J Biol Chem; 2013 Nov; 288(48):34826-38. PubMed ID: 24145031
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Directed evolution study of temperature adaptation in a psychrophilic enzyme.
    Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH
    J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Endoproteolytic cleavage of its propeptide is a prerequisite for efficient transport of furin out of the endoplasmic reticulum.
    Creemers JW; Vey M; Schäfer W; Ayoubi TA; Roebroek AJ; Klenk HD; Garten W; Van de Ven WJ
    J Biol Chem; 1995 Feb; 270(6):2695-702. PubMed ID: 7852339
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Purification and biochemical analysis of WprA, a 52-kDa serine protease secreted by B. subtilis as an active complex with its 23-kDa propeptide.
    Babé LM; Schmidt B
    Biochim Biophys Acta; 1998 Jul; 1386(1):211-9. PubMed ID: 9675284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.