BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8307978)

  • 61. Accelerated maturation of Tk-subtilisin by a Leu→Pro mutation at the C-terminus of the propeptide, which reduces the binding of the propeptide to Tk-subtilisin.
    Uehara R; Ueda Y; You DJ; Koga Y; Kanaya S
    FEBS J; 2013 Feb; 280(4):994-1006. PubMed ID: 23237738
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Autocatalytic processing of the streptococcal cysteine protease zymogen: processing mechanism and characterization of the autoproteolytic cleavage sites.
    Doran JD; Nomizu M; Takebe S; Ménard R; Griffith D; Ziomek E
    Eur J Biochem; 1999 Jul; 263(1):145-51. PubMed ID: 10429198
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Proregion of Bombyx mori cysteine proteinase functions as an intramolecular chaperone to promote proper folding of the mature enzyme.
    Yamamoto Y; Watabe S; Kageyama T; Takahashi SY
    Arch Insect Biochem Physiol; 1999 Nov; 42(3):167-78. PubMed ID: 10536045
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of the weak Ca(2+)-binding site of subtilisin J by site-directed mutagenesis on heat stability.
    Jang JS; Bae KH; Byun SM
    Biochem Biophys Res Commun; 1992 Oct; 188(1):184-9. PubMed ID: 1358066
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mutant subtilisin E with enhanced protease activity obtained by site-directed mutagenesis.
    Takagi H; Morinaga Y; Ikemura H; Inouye M
    J Biol Chem; 1988 Dec; 263(36):19592-6. PubMed ID: 3143728
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Random mutagenesis into the conserved Gly154 of subtilisin E: isolation and characterization of the revertant enzymes.
    Takagi H; Yamamoto M; Ohtsu I; Nakamori S
    Protein Eng; 1998 Dec; 11(12):1205-10. PubMed ID: 9930669
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Folding pathway mediated by an intramolecular chaperone. The inhibitory and chaperone functions of the subtilisin propeptide are not obligatorily linked.
    Fu X; Inouye M; Shinde U
    J Biol Chem; 2000 Jun; 275(22):16871-8. PubMed ID: 10828069
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An alternative mature form of subtilisin homologue, Tk-SP, from Thermococcus kodakaraensis identified in the presence of Ca2+.
    Sinsereekul N; Foophow T; Yamanouchi M; Koga Y; Takano K; Kanaya S
    FEBS J; 2011 Jun; 278(11):1901-11. PubMed ID: 21443525
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Folding of subtilisin BPN': characterization of a folding intermediate.
    Eder J; Rheinnecker M; Fersht AR
    Biochemistry; 1993 Jan; 32(1):18-26. PubMed ID: 8418836
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mutational analysis of the glutamine phosphoribosylpyrophosphate amidotransferase pro-peptide.
    Souciet JL; Hermodson MA; Zalkin H
    J Biol Chem; 1988 Mar; 263(7):3323-7. PubMed ID: 3125178
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Vacuolar processing enzyme is self-catalytically activated by sequential removal of the C-terminal and N-terminal propeptides.
    Hiraiwa N; Nishimura M; Hara-Nishimura I
    FEBS Lett; 1999 Mar; 447(2-3):213-6. PubMed ID: 10214948
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Presence of the propeptide on recombinant lysosomal dipeptidase controls both activation and dimerization.
    Dolenc I; Pain R; Turk V
    Biol Chem; 2007 Jan; 388(1):47-51. PubMed ID: 17214548
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli.
    Ikemura H; Takagi H; Inouye M
    J Biol Chem; 1987 Jun; 262(16):7859-64. PubMed ID: 3108260
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Subtilisin-like serine protease from hyperthermophilic archaeon Thermococcus kodakaraensis with N- and C-terminal propeptides.
    Foophow T; Tanaka S; Koga Y; Takano K; Kanaya S
    Protein Eng Des Sel; 2010 May; 23(5):347-55. PubMed ID: 20100702
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Evidence for propeptide-assisted folding of the calcium-dependent protease of the cyanobacterium Anabaena.
    Baier K; Nicklisch S; Maldener I; Lockau W
    Eur J Biochem; 1996 Nov; 241(3):750-5. PubMed ID: 8944762
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Engineering subtilisin into a fluoride-triggered processing protease useful for one-step protein purification.
    Ruan B; Fisher KE; Alexander PA; Doroshko V; Bryan PN
    Biochemistry; 2004 Nov; 43(46):14539-46. PubMed ID: 15544324
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Active subtilisin-like protease from a hyperthermophilic archaeon in a form with a putative prosequence.
    Kannan Y; Koga Y; Inoue Y; Haruki M; Takagi M; Imanaka T; Morikawa M; Kanaya S
    Appl Environ Microbiol; 2001 Jun; 67(6):2445-52. PubMed ID: 11375149
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Extracellular autoprocessing of a metalloprotease from Streptomyces cacaoi.
    Chang PC; Lee YH
    J Biol Chem; 1992 Feb; 267(6):3952-8. PubMed ID: 1740443
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Activation of subtilin precursors by Bacillus subtilis extracellular serine proteases subtilisin (AprE), WprA, and Vpr.
    Corvey C; Stein T; Düsterhus S; Karas M; Entian KD
    Biochem Biophys Res Commun; 2003 Apr; 304(1):48-54. PubMed ID: 12705882
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Construction of novel subtilisin E with high specificity, activity and productivity through multiple amino acid substitutions.
    Takagi H; Ohtsu I; Nakamori S
    Protein Eng; 1997 Sep; 10(9):985-9. PubMed ID: 9464562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.