BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 8308032)

  • 1. Binding of insect apolipophorin III to dimyristoylphosphatidylcholine vesicles. Evidence for a conformational change.
    Wientzek M; Kay CM; Oikawa K; Ryan RO
    J Biol Chem; 1994 Feb; 269(6):4605-12. PubMed ID: 8308032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a cryptic functional apolipophorin-III domain within the Prominin-1 gene of Litopenaeus vannamei.
    Hoyos-Gonzalez N; Ochoa-Leyva A; Benitez-Cardoza CG; Brieba LG; Lukaszewicz G; Trasviña-Arenas CH; Sotelo-Mundo RR
    Comp Biochem Physiol B Biochem Mol Biol; 2024; 270():110928. PubMed ID: 38043730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for the conformational adaptability of apolipophorin III, a helix-bundle exchangeable apolipoprotein.
    Wang J; Sykes BD; Ryan RO
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1188-93. PubMed ID: 11818551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apolipoprotein E3 Containing Nanodiscs as Vehicles for Transport and Targeted Delivery of Flavonoid Luteolin.
    Benedicto VGL; Haguar Z; Abdulhasan A; Narayanaswami V
    ACS Omega; 2024 Jan; 9(2):2988-2999. PubMed ID: 38250386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragments of
    Russell BA; Horn JVC; Weers PMM
    BBA Adv; 2021; 1():. PubMed ID: 36267477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foam fractionation of a recombinant biosurfactant apolipoprotein.
    Lethcoe K; Fox CA; Ryan RO
    J Biotechnol; 2022 Jan; 343():25-31. PubMed ID: 34808251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconfiguring Nature's Cholesterol Accepting Lipoproteins as Nanoparticle Platforms for Transport and Delivery of Therapeutic and Imaging Agents.
    Chuang ST; Cruz S; Narayanaswami V
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32397159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid-bound apoLp-III is less effective in binding to lipopolysaccharides and phosphatidylglycerol vesicles compared to the lipid-free protein.
    Wijeratne TU; Weers PMM
    Mol Cell Biochem; 2019 Aug; 458(1-2):61-70. PubMed ID: 31016454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Conformation of Interfacially Adsorbed Ranaspumin-2 Is an Arrested State on the Unfolding Pathway.
    Morris RJ; Brandani GB; Desai V; Smith BO; Schor M; MacPhee CE
    Biophys J; 2016 Aug; 111(4):732-742. PubMed ID: 27558717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of the N- or C-Terminal Helix of Apolipophorin III To Create a Four-Helix Bundle Protein.
    Dwivedi P; Rodriguez J; Ibe NU; Weers PM
    Biochemistry; 2016 Jul; 55(26):3607-15. PubMed ID: 27280697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helix 1 tryptophan variants in Galleria mellonella apolipophorin III.
    Thistle J; Martinon D; Weers PM
    Chem Phys Lipids; 2015 Dec; 193():18-23. PubMed ID: 26462904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the apoLp-III/LPS complex: insight into the mode of binding interaction.
    Oztug M; Martinon D; Weers PM
    Biochemistry; 2012 Aug; 51(31):6220-7. PubMed ID: 22779761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrene: a probe to study protein conformation and conformational changes.
    Bains G; Patel AB; Narayanaswami V
    Molecules; 2011 Sep; 16(9):7909-35. PubMed ID: 22143550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apolipoprotein-induced conversion of phosphatidylcholine bilayer vesicles into nanodisks.
    Wan CP; Chiu MH; Wu X; Lee SK; Prenner EJ; Weers PM
    Biochim Biophys Acta; 2011 Mar; 1808(3):606-13. PubMed ID: 21111706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel N-terminal mutation of human apolipoprotein A-I reduces self-association and impairs LCAT activation.
    Weers PM; Patel AB; Wan LC; Guigard E; Kay CM; Hafiane A; McPherson R; Marcel YL; Kiss RS
    J Lipid Res; 2011 Jan; 52(1):35-44. PubMed ID: 20884842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation, characterization, and stability of discretely-sized nanolipoprotein particles assembled with apolipophorin-III.
    Fischer NO; Blanchette CD; Segelke BW; Corzett M; Chromy BA; Kuhn EA; Bench G; Hoeprich PD
    PLoS One; 2010 Jul; 5(7):e11643. PubMed ID: 20657844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The helix bundle: a reversible lipid binding motif.
    Narayanaswami V; Kiss RS; Weers PM
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Feb; 155(2):123-33. PubMed ID: 19770066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and purification of polydisperse reconstituted lipoproteins and nanolipoprotein particles.
    Blanchette CD; Segelke BW; Fischer N; Corzett MH; Kuhn EA; Cappuccio JA; Benner WH; Coleman MA; Chromy BA; Bench G; Hoeprich PD; Sulchek TA
    Int J Mol Sci; 2009 Jul; 10(7):2958-2971. PubMed ID: 19742178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apolipophorin III interaction with model membranes composed of phosphatidylcholine and sphingomyelin using differential scanning calorimetry.
    Chiu MH; Wan CP; Weers PM; Prenner EJ
    Biochim Biophys Acta; 2009 Oct; 1788(10):2160-8. PubMed ID: 19647717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apolipophorin III lysine modification: Effect on structure and lipid binding.
    Vasquez LJ; Abdullahi GE; Wan CP; Weers PM
    Biochim Biophys Acta; 2009 Sep; 1788(9):1901-6. PubMed ID: 19450543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.