These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 8308043)
1. Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model. Ojha M J Biomech; 1993 Dec; 26(12):1377-88. PubMed ID: 8308043 [TBL] [Abstract][Full Text] [Related]
2. Influence of angle on wall shear stress distribution for an end-to-side anastomosis. Ojha M; Cobbold RS; Johnston KW J Vasc Surg; 1994 Jun; 19(6):1067-73. PubMed ID: 8201708 [TBL] [Abstract][Full Text] [Related]
3. Hemodynamics of a side-to-end proximal arterial anastomosis model. Ojha M; Cobbold RS; Johnston KW J Vasc Surg; 1993 Apr; 17(4):646-55. PubMed ID: 8464081 [TBL] [Abstract][Full Text] [Related]
4. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis. Lei M; Archie JP; Kleinstreuer C J Vasc Surg; 1997 Apr; 25(4):637-46. PubMed ID: 9129618 [TBL] [Abstract][Full Text] [Related]
5. The effect of wall distensibility on flow in a two-dimensional end-to-side anastomosis. Steinman DA; Ethier CR J Biomech Eng; 1994 Aug; 116(3):294-301. PubMed ID: 7799630 [TBL] [Abstract][Full Text] [Related]
6. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study. Keynton RS; Evancho MM; Sims RL; Rodway NV; Gobin A; Rittgers SE J Biomech Eng; 2001 Oct; 123(5):464-73. PubMed ID: 11601732 [TBL] [Abstract][Full Text] [Related]
7. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow. Freshwater IJ; Morsi YS; Lai T Proc Inst Mech Eng H; 2006 Oct; 220(7):743-57. PubMed ID: 17117764 [TBL] [Abstract][Full Text] [Related]
14. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. Haruguchi H; Teraoka S J Artif Organs; 2003; 6(4):227-35. PubMed ID: 14691664 [TBL] [Abstract][Full Text] [Related]
15. Particle image velocimetry measurements of three proximal anastomosis models under a pulsatile flow condition. Chua LP; Ji WF; Yu CM; Zhou TM; Tan YS Proc Inst Mech Eng H; 2008 Apr; 222(3):249-63. PubMed ID: 18491695 [TBL] [Abstract][Full Text] [Related]
16. The ratio of diameters between the target artery and the bypass modifies hemodynamic parameters related to intimal hyperplasia in the distal end-to-side anastomosis. Grus T; Lambert L; Matěcha J; Grusová G; Špaček M; Mlček M Physiol Res; 2016 Dec; 65(6):901-908. PubMed ID: 27539100 [TBL] [Abstract][Full Text] [Related]
17. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia. Hofer M; Rappitsch G; Perktold K; Trubel W; Schima H J Biomech; 1996 Oct; 29(10):1297-308. PubMed ID: 8884475 [TBL] [Abstract][Full Text] [Related]
18. Pulsatile flow in an end-to-side vascular graft model: comparison of computations with experimental data. Lei M; Giddens DP; Jones SA; Loth F; Bassiouny H J Biomech Eng; 2001 Feb; 123(1):80-7. PubMed ID: 11277306 [TBL] [Abstract][Full Text] [Related]
19. Computational investigations of a new prosthetic femoral-popliteal bypass graft design. O'Brien TP; Grace P; Walsh M; Burke P; McGloughlin T J Vasc Surg; 2005 Dec; 42(6):1169-75. PubMed ID: 16376210 [TBL] [Abstract][Full Text] [Related]
20. Interposition vein cuff anastomosis alters wall shear stress distribution in the recipient artery. How TV; Rowe CS; Gilling-Smith GL; Harris PL J Vasc Surg; 2000 May; 31(5):1008-17. PubMed ID: 10805893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]