These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8308174)

  • 21. Arginine-vasopressin and vasointestinal polypeptide rhythms in the suprachiasmatic nucleus of the mouse lemur reveal aging-related alterations of circadian pacemaker neurons in a non-human primate.
    Cayetanot F; Bentivoglio M; Aujard F
    Eur J Neurosci; 2005 Aug; 22(4):902-10. PubMed ID: 16115213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Retinal projections to the thalamic paraventricular nucleus in the rock cavy (Kerodon rupestris).
    Nascimento ES; Duarte RB; Silva SF; Engelberth RC; Toledo CA; Cavalcante JS; Costa MS
    Brain Res; 2008 Nov; 1241():56-61. PubMed ID: 18817760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retinohypothalamic projections in the common marmoset (Callithrix jacchus): A study using cholera toxin subunit B.
    Costa MS; Santee UR; Cavalcante JS; Moraes PR; Santos NP; Britto LR
    J Comp Neurol; 1999 Dec; 415(3):393-403. PubMed ID: 10553121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Retinohypothalamic tract development in the hamster and rat.
    Speh JC; Moore RY
    Brain Res Dev Brain Res; 1993 Dec; 76(2):171-81. PubMed ID: 8149583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential vulnerability of the rat retina, suprachiasmatic nucleus and intergeniculate leaflet to malnutrition induced during brain development.
    Vilela MC; Mendonça JE; Bittencourt H; Lapa RM; Alessio ML; Costa MS; Guedes RC; Silva VL; Andrade da Costa BL
    Brain Res Bull; 2005 Jan; 64(5):395-408. PubMed ID: 15607827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retinohypothalamic pathway in the dove demonstrated by anterograde HRP.
    Cooper ML; Pickard GE; Silver R
    Brain Res Bull; 1983 May; 10(5):715-8. PubMed ID: 6871740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct visual and circadian pathways target neuroendocrine cells in primates.
    Abizaid A; Horvath B; Keefe DL; Leranth C; Horvath TL
    Eur J Neurosci; 2004 Nov; 20(10):2767-76. PubMed ID: 15548220
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Target areas innervated by PACAP-immunoreactive retinal ganglion cells.
    Hannibal J; Fahrenkrug J
    Cell Tissue Res; 2004 Apr; 316(1):99-113. PubMed ID: 14991397
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The retinohypothalamic tract in the cat: retinal ganglion cell morphology and pattern of projection.
    Murakami DM; Miller JD; Fuller CA
    Brain Res; 1989 Mar; 482(2):283-96. PubMed ID: 2706488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The fourth C.U. Ariëns Kappers lecture. The organization of the human circadian timing system.
    Moore RY
    Prog Brain Res; 1992; 93():99-115; discussion 115-7. PubMed ID: 1480766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of astroglial elements in the suprachiasmatic nucleus of the rat: with special reference to the involvement of the optic nerve.
    Munekawa K; Tamada Y; Iijima N; Hayashi S; Ishihara A; Inoue K; Tanaka M; Ibata Y
    Exp Neurol; 2000 Nov; 166(1):44-51. PubMed ID: 11031082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calbindin D28K protein cells in a primate suprachiasmatic nucleus: localization, daily rhythm and age-related changes.
    Cayetanot F; Deprez J; Aujard F
    Eur J Neurosci; 2007 Oct; 26(7):2025-32. PubMed ID: 17897402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of neuronal membrane events in circadian rhythm generation.
    Lundkvist GB; Block GD
    Methods Enzymol; 2005; 393():623-42. PubMed ID: 15817316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A retinohypothalamic pathway in man: light mediation of circadian rhythms.
    Sadun AA; Schaechter JD; Smith LE
    Brain Res; 1984 Jun; 302(2):371-7. PubMed ID: 6733517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Circadian rhythms: basic neurobiology and clinical applications.
    Moore RY
    Annu Rev Med; 1997; 48():253-66. PubMed ID: 9046960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. N-acetylaspartylglutamate: a transmitter candidate for the retinohypothalamic tract.
    Moffett JR; Williamson L; Palkovits M; Namboodiri MA
    Proc Natl Acad Sci U S A; 1990 Oct; 87(20):8065-9. PubMed ID: 1978319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The retinohypothalamic projection and oxidative metabolism in the suprachiasmatic nucleus of primates and tree shrews.
    Murakami DM; Fuller CA
    Brain Behav Evol; 1990; 35(5):302-12. PubMed ID: 2169949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Demonstration of retinal afferents in the RCS rat, with reference to the retinohypothalamic projection and suprachiasmatic nucleus.
    Decker K; Disque-Kaiser U; Schreckenberger M; Reuss S
    Cell Tissue Res; 1995 Dec; 282(3):473-80. PubMed ID: 8581941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retinohypothalamic tract symmetry and phase shifts of circadian rhythms in rats and hamsters.
    Stephan FK; Donaldson JA; Gellert J
    Physiol Behav; 1982 Dec; 29(6):1153-8. PubMed ID: 6891797
    [No Abstract]   [Full Text] [Related]  

  • 40. Neonatal suprachiasmatic nucleus ablation: absence of functional and morphological plasticity.
    Mosko S; Moore RY
    Proc Natl Acad Sci U S A; 1978 Dec; 75(12):6243-6. PubMed ID: 282640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.