These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 8308262)

  • 1. [Development of telencephalon in Agapornis roseicollis Vieillot (Psittacidae) and its relationship to the evolution of the telencephalon in vertebrates].
    Kirsche W; Kirsche K
    J Hirnforsch; 1993; 34(4):467-91. PubMed ID: 8308262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homology in the evolution of the cerebral hemispheres. The case of reptilian dorsal ventricular ridge and its possible correspondence with mammalian neocortex.
    Aboitiz F
    J Hirnforsch; 1995; 36(4):461-72. PubMed ID: 8568216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thoughts on the development, structure and evolution of the mammalian and avian telencephalic pallium.
    Puelles L
    Philos Trans R Soc Lond B Biol Sci; 2001 Oct; 356(1414):1583-98. PubMed ID: 11604125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin and evolution of the vertebrate telencephalon, with special reference to the mammalian neocortex.
    Aboitiz F; Montiel J
    Adv Anat Embryol Cell Biol; 2007; 193():1-112. PubMed ID: 17595827
    [No Abstract]   [Full Text] [Related]  

  • 5. Evolutionary origins of the reptilian brain: the question of putative homologues of dorsal ventricular ridge. An overview and proposal.
    Aboitiz F
    Biol Res; 1995; 28(3):187-96. PubMed ID: 9251748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental origins of mosaic brain evolution: Morphometric analysis of the developing zebra finch brain.
    Charvet CJ; Striedter GF
    J Comp Neurol; 2009 May; 514(2):203-13. PubMed ID: 19266567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new interpretation on the homology of the teleostean telencephalon based on hodology and a new eversion model.
    Yamamoto N; Ishikawa Y; Yoshimoto M; Xue HG; Bahaxar N; Sawai N; Yang CY; Ozawa H; Ito H
    Brain Behav Evol; 2007; 69(2):96-104. PubMed ID: 17230017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of neuronal activity of telencephalic structures during chicken embryogenesis].
    Gevorgian EG; Bogdanov OV; Mikhaĭlenok EL
    Zh Evol Biokhim Fiziol; 1980; 16(3):273-81. PubMed ID: 7405442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The early development of the neopallial wall and area choroidea in fetal rats. A light and electron microscopic study.
    Aström KE; Webster HD
    Adv Anat Embryol Cell Biol; 1991; 123():1-76. PubMed ID: 1793003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental origins of species differences in telencephalon and tectum size: morphometric comparisons between a parakeet (Melopsittacus undulatus) and a quail (Colinus virgianus).
    Striedter GF; Charvet CJ
    J Comp Neurol; 2008 Apr; 507(5):1663-75. PubMed ID: 18241052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Structural organization of choroid plexus primordium in human telencephalon].
    Korzhevskiĭ DE
    Morfologiia; 2002; 121(1):63-7. PubMed ID: 12108104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perlecan controls neurogenesis in the developing telencephalon.
    Girós A; Morante J; Gil-Sanz C; Fairén A; Costell M
    BMC Dev Biol; 2007 Apr; 7():29. PubMed ID: 17411441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved and divergent patterns of Reelin expression in the zebrafish central nervous system.
    Costagli A; Kapsimali M; Wilson SW; Mione M
    J Comp Neurol; 2002 Aug; 450(1):73-93. PubMed ID: 12124768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Foundations of the new phylogenetics].
    Pavlinov IIa
    Zh Obshch Biol; 2004; 65(4):334-66. PubMed ID: 15490579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The avian telencephalic subpallium originates inhibitory neurons that invade tangentially the pallium (dorsal ventricular ridge and cortical areas).
    Cobos I; Puelles L; Martínez S
    Dev Biol; 2001 Nov; 239(1):30-45. PubMed ID: 11784017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reelin, radial fibers and cortical evolution: insights from comparative analysis of the mammalian and avian telencephalon.
    Nomura T; Hattori M; Osumi N
    Dev Growth Differ; 2009 Apr; 51(3):287-97. PubMed ID: 19210541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression patterns of developmental regulatory genes show comparable divisions in the telencephalon of Xenopus and mouse: insights into the evolution of the forebrain.
    Medina L; Brox A; Legaz I; García-López M; Puelles L
    Brain Res Bull; 2005 Sep; 66(4-6):297-302. PubMed ID: 16144605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadherin expression by embryonic divisions and derived gray matter structures in the telencephalon of the chicken.
    Redies C; Medina L; Puelles L
    J Comp Neurol; 2001 Sep; 438(3):253-85. PubMed ID: 11550172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The evolution of the structure of the neocortex in mammals: a new theory of cytoarchitecture].
    Marín Padilla M
    Rev Neurol; 2001 Nov 1-15; 33(9):843-53. PubMed ID: 11784988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early telencephalic migration topographically converging in the olfactory cortex.
    García-Moreno F; López-Mascaraque L; de Carlos JA
    Cereb Cortex; 2008 Jun; 18(6):1239-52. PubMed ID: 17878174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.