BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 8308262)

  • 21. [Autoradiographic investigations on postnatal proliferative activity of the telencephalic and diencephalic matrix-zones in the axolotl (Ambystoma mexicanum), with special references to the olfactory organ (author's transl)].
    Richter W; Kranz D
    Z Mikrosk Anat Forsch; 1981; 95(6):883-904. PubMed ID: 7336815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3H-thymidine autoradiographic analysis of telencephalic histogenesis in the chick embryo: I. Neuronal birthdates of telencephalic compartments in situ.
    Tsai HM; Garber BB; Larramendi LM
    J Comp Neurol; 1981 May; 198(2):275-92. PubMed ID: 7240446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Early development and embryology of the platypus.
    Hughes RL; Hall LS
    Philos Trans R Soc Lond B Biol Sci; 1998 Jul; 353(1372):1101-14. PubMed ID: 9720108
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Limb anomalies from evolutionary, developmental, and genetic perspectives.
    Opitz JM
    Birth Defects Orig Artic Ser; 1996; 30(1):35-77. PubMed ID: 9125339
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validating in utero electroporation for the rapid analysis of gene regulatory elements in the murine telencephalon.
    Langevin LM; Mattar P; Scardigli R; Roussigné M; Logan C; Blader P; Schuurmans C
    Dev Dyn; 2007 May; 236(5):1273-86. PubMed ID: 17377980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phylogeny of the telencephalic subventricular zone in sauropsids: evidence for the sequential evolution of pallial and subpallial subventricular zones.
    Charvet CJ; Owerkowicz T; Striedter GF
    Brain Behav Evol; 2009; 73(4):285-94. PubMed ID: 19641308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gli3 is required autonomously for dorsal telencephalic cells to adopt appropriate fates during embryonic forebrain development.
    Quinn JC; Molinek M; Mason JO; Price DJ
    Dev Biol; 2009 Mar; 327(1):204-15. PubMed ID: 19121302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The evolution of the neocortex in mammals: intrinsic and extrinsic contributions to the cortical phenotype.
    Karlen SJ; Krubitzer L
    Novartis Found Symp; 2006; 270():146-59; discussion 159-69. PubMed ID: 16649713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Characteristics of the histogenesis of the cerebral cortex in mice with protein-energy deficiency during the prenatal period of body development].
    Savrova OB; Medvedev DI
    Biull Eksp Biol Med; 1985 Jun; 99(6):738-40. PubMed ID: 3926019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Head size constrains forebrain development and evolution in ray-finned fishes.
    Striedter GF; Northcutt RG
    Evol Dev; 2006; 8(2):215-22. PubMed ID: 16509899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Morphogenesis of neural derivates after transplantation of the rat embryo telencephalon to the testis of sexually mature animals].
    Dyban PA
    Biull Eksp Biol Med; 1989 Jan; 107(1):87-9. PubMed ID: 2914180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Homology and evolutionary origins of the 'neocortex'.
    Karten HJ
    Brain Behav Evol; 1991; 38(4-5):264-72. PubMed ID: 1777808
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tangential migratory pathways of subpallial origin in the embryonic telencephalon of sharks: evolutionary implications.
    Quintana-Urzainqui I; Rodríguez-Moldes I; Mazan S; Candal E
    Brain Struct Funct; 2015 Sep; 220(5):2905-26. PubMed ID: 25079345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cytoarchitectonic study of the brain of a perciform species, the sea bass (Dicentrarchus labrax). I. The telencephalon.
    Cerdá-Reverter JM; Zanuy S; Muñoz-Cueto JA
    J Morphol; 2001 Mar; 247(3):217-28. PubMed ID: 11223929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ontogeny of the human central nervous system: what is happening when?
    de Graaf-Peters VB; Hadders-Algra M
    Early Hum Dev; 2006 Apr; 82(4):257-66. PubMed ID: 16360292
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain growth and differentiation in two fetal bats: qualitative and quantitative aspects.
    Pirlot P; Bernier R
    Am J Anat; 1991 Feb; 190(2):167-81. PubMed ID: 2012004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium-binding proteins in the human developing brain.
    Ulfig N
    Adv Anat Embryol Cell Biol; 2002; 165():III-IX, 1-92. PubMed ID: 12236093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Model systems for the study of kidney development: use of the pronephros in the analysis of organ induction and patterning.
    Vize PD; Seufert DW; Carroll TJ; Wallingford JB
    Dev Biol; 1997 Aug; 188(2):189-204. PubMed ID: 9268568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential growth of the cell production systems in the lateral wall of the developing mouse telencephalon.
    Smart IH
    J Anat; 1985 Aug; 141():219-29. PubMed ID: 4077718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The evolution of brain size and organization in vertebrates. A program for research.
    Aboitiz F
    Biol Res; 1994; 27(1):15-27. PubMed ID: 7647812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.