These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

31 related articles for article (PubMed ID: 8309930)

  • 1. AI applications in functional genomics.
    Caudai C; Galizia A; Geraci F; Le Pera L; Morea V; Salerno E; Via A; Colombo T
    Comput Struct Biotechnol J; 2021; 19():5762-5790. PubMed ID: 34765093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SlWRKY45, nematode-responsive tomato WRKY gene, enhances susceptibility to the root knot nematode; M. javanica infection.
    Chinnapandi B; Bucki P; Braun Miyara S
    Plant Signal Behav; 2017 Dec; 12(12):e1356530. PubMed ID: 29271721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification of Recombinant Peanut Allergen Ara h 1 and Comparison of IgE Binding to the Natural Protein.
    Hurlburt BK; McBride JK; Nesbit JB; Ruan S; Maleki SJ
    Foods; 2014 Dec; 3(4):642-657. PubMed ID: 28234343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Meloidogyne incognita Effector Misp12 Suppresses Plant Defense Response at Latter Stages of Nematode Parasitism.
    Xie J; Li S; Mo C; Wang G; Xiao X; Xiao Y
    Front Plant Sci; 2016; 7():964. PubMed ID: 27446188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid-and retinol-binding protein, Mj-FAR-1 induces tomato host susceptibility to root-knot nematodes.
    Iberkleid I; Vieira P; de Almeida Engler J; Firester K; Spiegel Y; Horowitz SB
    PLoS One; 2013; 8(5):e64586. PubMed ID: 23717636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrum of disease-causing mutations in protein secondary structures.
    Khan S; Vihinen M
    BMC Struct Biol; 2007 Aug; 7():56. PubMed ID: 17727703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of functional domains of equine infectious anemia virus Rev suggests a bipartite RNA-binding domain.
    Lee JH; Murphy SC; Belshan M; Sparks WO; Wannemuehler Y; Liu S; Hope TJ; Dobbs D; Carpenter S
    J Virol; 2006 Apr; 80(8):3844-52. PubMed ID: 16571801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The acidic C-terminal domain of protein disulfide isomerase is not critical for the enzyme subunit function or for the chaperone or disulfide isomerase activities of the polypeptide.
    Koivunen P; Pirneskoski A; Karvonen P; Ljung J; Helaakoski T; Notbohm H; Kivirikko KI
    EMBO J; 1999 Jan; 18(1):65-74. PubMed ID: 9878051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary structure of apolipophorin-III from the greater wax moth, Galleria mellonella.
    Weise C; Franke P; Kopácek P; Wiesner A
    J Protein Chem; 1998 Oct; 17(7):633-41. PubMed ID: 9853677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two distinct nuclear receptor interaction domains in NSD1, a novel SET protein that exhibits characteristics of both corepressors and coactivators.
    Huang N; vom Baur E; Garnier JM; Lerouge T; Vonesch JL; Lutz Y; Chambon P; Losson R
    EMBO J; 1998 Jun; 17(12):3398-412. PubMed ID: 9628876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermediates in the assembly pathway of the double-stranded RNA virus phi6.
    Butcher SJ; Dokland T; Ojala PM; Bamford DH; Fuller SD
    EMBO J; 1997 Jul; 16(14):4477-87. PubMed ID: 9250692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topology prediction for helical transmembrane proteins at 86% accuracy.
    Rost B; Fariselli P; Casadio R
    Protein Sci; 1996 Aug; 5(8):1704-18. PubMed ID: 8844859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The blind watchmaker and rational protein engineering.
    Anthonsen HW; Baptista A; Drabløs F; Martel P; Petersen SB
    J Biotechnol; 1994 Aug; 36(3):185-220. PubMed ID: 7765263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary structure prediction of all-helical proteins in two states.
    Rost B; Sander C
    Protein Eng; 1993 Nov; 6(8):831-6. PubMed ID: 8309930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein secondary structure prediction with SPARROW.
    Bettella F; Rasinski D; Knapp EW
    J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved prediction of protein secondary structure by use of sequence profiles and neural networks.
    Rost B; Sander C
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7558-62. PubMed ID: 8356056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments.
    Riis SK; Krogh A
    J Comput Biol; 1996; 3(1):163-83. PubMed ID: 8697234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redefining the goals of protein secondary structure prediction.
    Rost B; Sander C; Schneider R
    J Mol Biol; 1994 Jan; 235(1):13-26. PubMed ID: 8289237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review: protein secondary structure prediction continues to rise.
    Rost B
    J Struct Biol; 2001; 134(2-3):204-18. PubMed ID: 11551180
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.