These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8309933)

  • 1. Theoretical studies of Rhizomucor miehei lipase activation.
    Norin M; Olsen O; Svendsen A; Edholm O; Hult K
    Protein Eng; 1993 Nov; 6(8):855-63. PubMed ID: 8309933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase.
    Peters GH; Olsen OH; Svendsen A; Wade RC
    Biophys J; 1996 Jul; 71(1):119-29. PubMed ID: 8804595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of arginines in stabilizing the active open-lid conformation of Rhizomucor miehei lipase.
    Holmquist M; Norin M; Hult K
    Lipids; 1993 Aug; 28(8):721-6. PubMed ID: 8377587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational change in the activation of lipase: an analysis in terms of low-frequency normal modes.
    Jääskeläinen S; Verma CS; Hubbard RE; Linko P; Caves LS
    Protein Sci; 1998 Jun; 7(6):1359-67. PubMed ID: 9655340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of solvent-dependent conformational transitions in Burkholderia cepacia lipase.
    Trodler P; Schmid RD; Pleiss J
    BMC Struct Biol; 2009 May; 9():38. PubMed ID: 19476626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular modelling studies of substrate binding to the lipase from Rhizomucor miehei.
    Yagnik AT; Littlechild JA; Turner NJ
    J Comput Aided Mol Des; 1997 May; 11(3):256-64. PubMed ID: 9263852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase.
    Derewenda U; Brzozowski AM; Lawson DM; Derewenda ZS
    Biochemistry; 1992 Feb; 31(5):1532-41. PubMed ID: 1737010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of an electrostatic network of residues in the enzymatic action of the Rhizomucor miehei lipase family.
    Herrgård S; Gibas CJ; Subramaniam S
    Biochemistry; 2000 Mar; 39(11):2921-30. PubMed ID: 10715112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa.
    Norin M; Haeffner F; Achour A; Norin T; Hult K
    Protein Sci; 1994 Sep; 3(9):1493-503. PubMed ID: 7833809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 A resolution.
    Derewenda ZS; Derewenda U; Dodson GG
    J Mol Biol; 1992 Oct; 227(3):818-39. PubMed ID: 1404390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of an enzyme simulated by explicit dynamics of an active site lid.
    Northrup SH
    Biophys J; 1996 Jul; 71(1):3. PubMed ID: 8804581
    [No Abstract]   [Full Text] [Related]  

  • 12. Computational studies of the activation of lipases and the effect of a hydrophobic environment.
    Peters GH; Toxvaerd S; Olsen OH; Svendsen A
    Protein Eng; 1997 Feb; 10(2):137-47. PubMed ID: 9089813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential dynamics of lipase binding sites: the effect of inhibitors of different chain length.
    Peters GH; van Aalten DM; Svendsen A; Bywater R
    Protein Eng; 1997 Feb; 10(2):149-58. PubMed ID: 9089814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent-induced lid opening in lipases: a molecular dynamics study.
    Rehm S; Trodler P; Pleiss J
    Protein Sci; 2010 Nov; 19(11):2122-30. PubMed ID: 20812327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex.
    Brzozowski AM; Derewenda U; Derewenda ZS; Dodson GG; Lawson DM; Turkenburg JP; Bjorkling F; Huge-Jensen B; Patkar SA; Thim L
    Nature; 1991 Jun; 351(6326):491-4. PubMed ID: 2046751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of temperature and pressure on Rhizomucor miehei lipase stability.
    Noel M; Combes D
    J Biotechnol; 2003 Apr; 102(1):23-32. PubMed ID: 12668311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations.
    Barbe S; Lafaquière V; Guieysse D; Monsan P; Remaud-Siméon M; André I
    Proteins; 2009 Nov; 77(3):509-23. PubMed ID: 19475702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the substrate specificity for lipases. II. Kinetic and modeling studies on the molecular recognition of 2-arylpropionic esters by Candida rugosa and Rhizomucor miehei lipases.
    Botta M; Cernia E; Corelli F; Manetti F; Soro S
    Biochim Biophys Acta; 1997 Feb; 1337(2):302-10. PubMed ID: 9048908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the dynamics of rhizomucor miehei lipase at different temperatures.
    Peters GH; Toxvaerd S; Andersen KV; Svendsen A
    J Biomol Struct Dyn; 1999 Apr; 16(5):1003-18. PubMed ID: 10333171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipases from Rhizomucor miehei and Humicola lanuginosa: modification of the lid covering the active site alters enantioselectivity.
    Holmquist M; Martinelle M; Berglund P; Clausen IG; Patkar S; Svendsen A; Hult K
    J Protein Chem; 1993 Dec; 12(6):749-57. PubMed ID: 8136025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.