These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 8310061)
1. Posttranslational processing of a new class of hydroxyproline-containing proteins. Prolyl hydroxylation and C-terminal cleavage of tobacco (Nicotiana tabacum) vacuolar chitinase. Sticher L; Hofsteenge J; Neuhaus JM; Boller T; Meins F Plant Physiol; 1993 Apr; 101(4):1239-47. PubMed ID: 8310061 [TBL] [Abstract][Full Text] [Related]
2. Mutation analysis of the C-terminal vacuolar targeting peptide of tobacco chitinase: low specificity of the sorting system, and gradual transition between intracellular retention and secretion into the extracellular space. Neuhaus JM; Pietrzak M; Boller T Plant J; 1994 Jan; 5(1):45-54. PubMed ID: 8130797 [TBL] [Abstract][Full Text] [Related]
3. Correct targeting of a vacuolar tobacco chitinase in Saccharomyces cerevisiae--post-translational modifications are dependent on the host strain. Kunze I; Nilsson C; Adler K; Manteuffel R; Horstmann C; Bröker M; Kunze G Biochim Biophys Acta; 1998 Feb; 1395(3):329-44. PubMed ID: 9512669 [TBL] [Abstract][Full Text] [Related]
4. Vacuolar chitinases of tobacco: a new class of hydroxyproline-containing proteins. Sticher L; Hofsteenge J; Milani A; Neuhaus JM; Meins F Science; 1992 Jul; 257(5070):655-7. PubMed ID: 1496378 [TBL] [Abstract][Full Text] [Related]
5. Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and beta-1,3-glucanase in transgenic plants. Melchers LS; Sela-Buurlage MB; Vloemans SA; Woloshuk CP; Van Roekel JS; Pen J; van den Elzen PJ; Cornelissen BJ Plant Mol Biol; 1993 Feb; 21(4):583-93. PubMed ID: 8448358 [TBL] [Abstract][Full Text] [Related]
6. A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Neuhaus JM; Sticher L; Meins F; Boller T Proc Natl Acad Sci U S A; 1991 Nov; 88(22):10362-6. PubMed ID: 1946457 [TBL] [Abstract][Full Text] [Related]
7. Evidence for secretion of vacuolar alpha-mannosidase, class I chitinase, and class I beta-1,3-glucanase in suspension cultures of tobacco cells. Kunze I; Kunze G; Bröker M; Manteuffel R; Meins F; Müntz K Planta; 1998 May; 205(1):92-9. PubMed ID: 9599806 [TBL] [Abstract][Full Text] [Related]
8. The structure and regulation of homeologous tobacco endochitinase genes of Nicotiana sylvestris and N. tomentosiformis origin. van Buuren M; Neuhaus JM; Shinshi H; Ryals J; Meins F Mol Gen Genet; 1992 Apr; 232(3):460-9. PubMed ID: 1588915 [TBL] [Abstract][Full Text] [Related]
9. Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene. Hart CM; Fischer B; Neuhaus JM; Meins F Mol Gen Genet; 1992 Nov; 235(2-3):179-88. PubMed ID: 1281514 [TBL] [Abstract][Full Text] [Related]
10. A tobacco gene encoding a novel basic class II chitinase: a putative ancestor of basic class I and acidic class II chitinase genes. Ohme-Takagi M; Meins F; Shinshi H Mol Gen Genet; 1998 Sep; 259(5):511-5. PubMed ID: 9790582 [TBL] [Abstract][Full Text] [Related]
11. Substrate specificity and antifungal activity of recombinant tobacco class I chitinases. Suarez V; Staehelin C; Arango R; Holtorf H; Hofsteenge J; Meins F Plant Mol Biol; 2001 Mar; 45(5):609-18. PubMed ID: 11414619 [TBL] [Abstract][Full Text] [Related]
12. Intracellular localization of a class IV chitinase from yam. Mitsunaga T; Iwase M; Yuki D; Koga D Biosci Biotechnol Biochem; 2004 Jul; 68(7):1518-24. PubMed ID: 15277756 [TBL] [Abstract][Full Text] [Related]
13. High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Neuhaus JM; Ahl-Goy P; Hinz U; Flores S; Meins F Plant Mol Biol; 1991 Jan; 16(1):141-51. PubMed ID: 1888892 [TBL] [Abstract][Full Text] [Related]
14. Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain. Shinshi H; Neuhas JM; Ryals J; Meins F Plant Mol Biol; 1990 Mar; 14(3):357-68. PubMed ID: 1966383 [TBL] [Abstract][Full Text] [Related]
15. The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Iseli B; Boller T; Neuhaus JM Plant Physiol; 1993 Sep; 103(1):221-6. PubMed ID: 8208848 [TBL] [Abstract][Full Text] [Related]
16. Acidic and basic class III chitinase mRNA accumulation in response to TMV infection of tobacco. Lawton K; Ward E; Payne G; Moyer M; Ryals J Plant Mol Biol; 1992 Aug; 19(5):735-43. PubMed ID: 1643280 [TBL] [Abstract][Full Text] [Related]
17. A novel pathogen- and wound-inducible tobacco (Nicotiana tabacum) protein with antifungal activity. Ponstein AS; Bres-Vloemans SA; Sela-Buurlage MB; van den Elzen PJ; Melchers LS; Cornelissen BJ Plant Physiol; 1994 Jan; 104(1):109-18. PubMed ID: 8115541 [TBL] [Abstract][Full Text] [Related]
18. Colocalization of barley lectin and sporamin in vacuoles of transgenic tobacco plants. Schroeder MR; Borkhsenious ON; Matsuoka K; Nakamura K; Raikhel NV Plant Physiol; 1993 Feb; 101(2):451-8. PubMed ID: 8278507 [TBL] [Abstract][Full Text] [Related]
19. Molecular characterization of a novel tobacco pathogenesis-related (PR) protein: a new plant chitinase/lysozyme. Heitz T; Segond S; Kauffmann S; Geoffroy P; Prasad V; Brunner F; Fritig B; Legrand M Mol Gen Genet; 1994 Oct; 245(2):246-54. PubMed ID: 7816033 [TBL] [Abstract][Full Text] [Related]
20. Novel osmotically induced antifungal chitinases and bacterial expression of an active recombinant isoform. Yun DJ; D'Urzo MP; Abad L; Takeda S; Salzman R; Chen Z; Lee H; Hasegawa PM; Bressan RA Plant Physiol; 1996 Aug; 111(4):1219-25. PubMed ID: 8756502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]