These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 8310169)

  • 1. [Maps of visually evoked brain electrical activity in rabbits].
    Pérez-Cobo JC; Sánchez-Suero S; López de Armentia M; Pérez-Arroyo M
    Rev Esp Fisiol; 1993 Sep; 49(3):181-6. PubMed ID: 8310169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of stimulus intensity on visually-evoked electrical brain activity maps in rabbit.
    Pérez-Cobo JC; Sánchez-Suero S; López de Armentia M; Pérez-Arroyo M
    Rev Esp Fisiol; 1994 Mar; 50(1):1-4. PubMed ID: 7991934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual evoked potentials in response to flashes in the cat cortex.
    Pérez-Cobo JC; López de Armentia M; Sánchez-Suero S; Pérez-Arroyo M
    Rev Esp Fisiol; 1994 Sep; 50(3):183-90. PubMed ID: 7886275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual evoked potentials in response to pattern reversal in the cat cortex.
    Pérez-Cobo JC; López de Armentia M; Sánchez-Suero S; Pérez-Arroyo M
    Rev Esp Fisiol; 1994 Dec; 50(4):205-10. PubMed ID: 7754162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Visual evoked potentials produced by monocular flash stimuli in the cerebral cortex of the rabbit. I. Typology].
    Pérez-Cobo JC; Ruiz-Beramendi M; Pérez-Arroyo M
    Rev Esp Fisiol; 1990 Dec; 46(4):359-64. PubMed ID: 2099532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Visual evoked potentials produced by monocular flash stimuli in the cerebral cortex of the rabbit. I. Typography].
    Pérez-Cobo JC; Ruiz-Beramendi M; Pérez-Arroyo M
    Rev Esp Fisiol; 1990 Dec; 46(4):365-9. PubMed ID: 2099533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Dipole tracing of visual evoked potentials in human brain].
    Shevelev IA; Mikhaĭlova ES; Kulikov MA; Slavutskaia AV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2008; 58(2):151-62. PubMed ID: 18661777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Trajectories of shifting of dipole sources of visual evoked potentials over the human brain].
    Mikhaĭlova ES; Zhila AV; Slavutskaia AV; Kulikov MA; Shevelev IA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2007; 57(6):673-83. PubMed ID: 18592702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping multiple features in the population response of visual cortex.
    Basole A; White LE; Fitzpatrick D
    Nature; 2003 Jun; 423(6943):986-90. PubMed ID: 12827202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The phases of visual cortex and hippocampal evoked potentials in rabbit reflect the orienting reaction in case of visual stimuli intensity changes].
    Polianskiĭ VB; Evtikhin DV; Sokolov EN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2003; 53(1):51-61. PubMed ID: 12669504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Comparison of electrically evoked response (EER) and visual evoked potential (VEP) by topography and dipole-tracing].
    Takei K; Nakano H; Hommura S; Nakajima Y
    Nippon Ganka Gakkai Zasshi; 1991 Feb; 95(2):190-8. PubMed ID: 2053530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque.
    Tolias AS; Sultan F; Augath M; Oeltermann A; Tehovnik EJ; Schiller PH; Logothetis NK
    Neuron; 2005 Dec; 48(6):901-11. PubMed ID: 16364895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for learning topographically organized parts-based representations of objects in visual cortex: topographic nonnegative matrix factorization.
    Hosoda K; Watanabe M; Wersing H; Körner E; Tsujino H; Tamura H; Fujita I
    Neural Comput; 2009 Sep; 21(9):2605-33. PubMed ID: 19548799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correspondence of visual evoked potentials with FMRI signals in human visual cortex.
    Whittingstall K; Wilson D; Schmidt M; Stroink G
    Brain Topogr; 2008 Dec; 21(2):86-92. PubMed ID: 18841455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Brain potential mapping by a new method of polynomial interpolation].
    Pérez-Cobo JC; Asencor FJ; Sánchez-Suero S; Pérez-Arroyo M
    Rev Esp Fisiol; 1993 Jun; 49(2):131-6. PubMed ID: 8378586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Timing of early activity in the visual cortex as revealed by simultaneous MEG and ERG recordings.
    Inui K; Sannan H; Miki K; Kaneoke Y; Kakigi R
    Neuroimage; 2006 Mar; 30(1):239-44. PubMed ID: 16310379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual cortical potentials of the mouse evoked by electrical stimulation of the retina.
    Siu TL; Morley JW
    Brain Res Bull; 2008 Jan; 75(1):115-8. PubMed ID: 18158104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical response field dynamics in cat visual cortex.
    Sharon D; Jancke D; Chavane F; Na'aman S; Grinvald A
    Cereb Cortex; 2007 Dec; 17(12):2866-77. PubMed ID: 17395608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain mechanisms underlying visual perception and visual mental imagery of Chinese pseudo-characters: an event-related potential study.
    Qiu J; Li H; Liu Q; Zhang Q
    Brain Res; 2007 Dec; 1184():202-9. PubMed ID: 18028887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys.
    Slovin H; Arieli A; Hildesheim R; Grinvald A
    J Neurophysiol; 2002 Dec; 88(6):3421-38. PubMed ID: 12466458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.