BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 8310604)

  • 1. Biocompatibility of glass-encapsulated electronic chips (transponders) used for the identification of pigs.
    Gruys E; Schakenraad JM; Kruit LK; Bolscher JM
    Vet Rec; 1993 Oct; 133(16):385-8. PubMed ID: 8310604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of injecting electronic transponders into the auricle of pigs.
    Lammers GH; Langeveld NG; Lambooij E; Gruys E
    Vet Rec; 1995 Jun; 136(24):606-9. PubMed ID: 7571264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcutaneous tissue reaction to polyethylene terephtalate-covered electronic identification transponders in pigs.
    Lambooij E; de Groot PH; Molenbeek RF; Gruys E
    Vet Q; 1992 Dec; 14(4):145-7. PubMed ID: 1485404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic identification with injectable transponders in pig production: results of a field trail on commercial farms and slaughterhouses concerning injectability and retrievability.
    Lambooij E; Langeveld NG; Lammers GH; Huiskes JH
    Vet Q; 1995 Dec; 17(4):118-23. PubMed ID: 8751271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal implantation site of transponders for identification of experimental swine.
    Nakamura S; Sakaoka A; Ikuno E; Asou R; Shimizu D; Hagiwara H
    Exp Anim; 2019 Feb; 68(1):13-23. PubMed ID: 30078789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Implantation of transponders at the bottom of the ear in equines].
    Mader Ch; Geisel O; Gerhards H; Hermanns W
    Berl Munch Tierarztl Wochenschr; 2002; 115(5-6):161-6. PubMed ID: 12058588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Readability and histological biocompatibility of microchip transponders in horses.
    Wulf M; Wohlsein P; Aurich JE; Nees M; Baumgärtner W; Aurich C
    Vet J; 2013 Oct; 198(1):103-8. PubMed ID: 23769456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traceability of extensively produced Iberian pigs using visual and electronic identification devices from farm to slaughter.
    Gosálvez LF; Santamarina C; Averós X; Hernández-Jover M; Caja G; Babot D
    J Anim Sci; 2007 Oct; 85(10):2746-52. PubMed ID: 17609464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo reactions in mice and in vitro reactions in feline cells to implantable microchip transponders with different surface materials.
    Linder M; Hüther S; Reinacher M
    Vet Rec; 2009 Jul; 165(2):45-50. PubMed ID: 19596675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological responses to multilayered DNA-coatings.
    van den Beucken JJ; Walboomers XF; Vos MR; Sommerdijk NA; Nolte RJ; Jansen JA
    J Biomed Mater Res B Appl Biomater; 2007 Apr; 81(1):231-8. PubMed ID: 16969822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of ear tags and injectable transponders for the identification and traceability of pigs from birth to the end of the slaughter line.
    Caja G; Hernández-Jover M; Conill C; Garín D; Alabern X; Farriol B; Ghirardi J
    J Anim Sci; 2005 Sep; 83(9):2215-24. PubMed ID: 16100077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcutaneous electronic identification in cattle: a field study.
    Løken T; Vatn G; Kummen E
    Vet Rec; 2011 Sep; 169(10):250. PubMed ID: 21813580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility of steroid-HA delivery system using adult castrated rams as a model.
    Benghuzzi H; England B
    Biomed Sci Instrum; 2001; 37():275-80. PubMed ID: 11347402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of visual and electronic identification devices in pigs: slaughterhouse performance.
    Santamarina C; Hernández-Jover M; Babot D; Caja G
    J Anim Sci; 2007 Feb; 85(2):497-502. PubMed ID: 17235033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological and migrational characteristics of transponders implanted into beagle dogs.
    Jansen JA; van der Waerden JP; Gwalter RH; van Rooy SA
    Vet Rec; 1999 Sep; 145(12):329-33. PubMed ID: 10530881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of sites for implanting identification transponders in cattle.
    Hasker PJ; Bassingthwaighte J; Round PJ
    Aust Vet J; 1992 Apr; 69(4):91. PubMed ID: 1605792
    [No Abstract]   [Full Text] [Related]  

  • 17. Biofunctionalization of silicone rubber with microgroove-patterned surface and carbon-ion implantation to enhance biocompatibility and reduce capsule formation.
    Lei ZY; Liu T; Li WJ; Shi XH; Fan DL
    Int J Nanomedicine; 2016; 11():5563-5572. PubMed ID: 27822035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility and osteogenetic characteristics of new biocompatible glasses.
    Barbon F; Locardi B; Verità M; Gabbi C; Grispigni C; Tranquilli Leali P; Brach del Prever E; Gallinaro P; Cerulli G; Del Bue GL
    Biomaterials; 1991 Aug; 12(6):565-8. PubMed ID: 1772954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of passive injectable transponders in fattening lambs from birth to slaughter: effects of injection position, age, and breed.
    Conill C; Caja G; Nehring R; Ribó O
    J Anim Sci; 2002 Apr; 80(4):919-25. PubMed ID: 12002329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of fibrous tissue formation surrounding intraperitoneal and subcutaneous implantation of ALCAP, HA, and TCP ceramic devices.
    Butler K; Benghuzzi H; Tucci M; Cason Z
    Biomed Sci Instrum; 1997; 34():18-23. PubMed ID: 9603006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.