BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 8311444)

  • 1. Identification of a molecular species in porcine ovarian luteal glutathione S-transferase and its hormonal regulation by pituitary gonadotropins.
    Keira M; Nishihira J; Ishibashi T; Tanaka T; Fujimoto S
    Arch Biochem Biophys; 1994 Jan; 308(1):126-32. PubMed ID: 8311444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Identification of molecular species in porcine luteal glutathione S-transferase and its hormonal regulation by hypophyseal gonadotropins].
    Keira M
    Hokkaido Igaku Zasshi; 1992 Sep; 67(5):595-605. PubMed ID: 1427602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High expression of bovine alpha glutathione S-transferase (GSTA1, GSTA2) subunits is mainly associated with steroidogenically active cells and regulated by gonadotropins in bovine ovarian follicles.
    Rabahi F; Brûlé S; Sirois J; Beckers JF; Silversides DW; Lussier JG
    Endocrinology; 1999 Aug; 140(8):3507-17. PubMed ID: 10433206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porcine glutathione transferase Alpha 2-2 is a human GST A3-3 analogue that catalyses steroid double-bond isomerization.
    Fedulova N; Raffalli-Mathieu F; Mannervik B
    Biochem J; 2010 Oct; 431(1):159-67. PubMed ID: 20673231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presence of beta-follicle-stimulating hormone and beta-luteinizing hormone transcripts in the brain of Cichlasoma dimerus (Perciformes: Cichlidae): effect of brain-derived gonadotropins on pituitary hormone release.
    Pandolfi M; Pozzi AG; Cánepa M; Vissio PG; Shimizu A; Maggese MC; Lobo G
    Neuroendocrinology; 2009; 89(1):27-37. PubMed ID: 18758154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of glutathione S-transferase of murine ovary and testis.
    Awasthi S; Singhal SS; Srivastava SK; Awasthi YC
    Arch Biochem Biophys; 1993 Feb; 301(1):143-50. PubMed ID: 8442656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of adiponectin and its receptors (AdipoR1 and AdipoR2) in chicken ovary: potential role in ovarian steroidogenesis.
    Chabrolle C; Tosca L; Crochet S; Tesseraud S; Dupont J
    Domest Anim Endocrinol; 2007 Nov; 33(4):480-7. PubMed ID: 17010558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responsiveness of adenylate cyclase to pituitary gonadotropins and evidence of a hormone-induced desensitization in the lizard ovary.
    Borrelli L; De Stasio R; Bovenzi V; Parisi E; Filosa S
    Gen Comp Endocrinol; 1997 Jul; 107(1):23-31. PubMed ID: 9208303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local production of the gonadotropic hormones in the rat ovary.
    Schirman-Hildesheim TD; Gershon E; Litichever N; Galiani D; Ben-Aroya N; Dekel N; Koch Y
    Mol Cell Endocrinol; 2008 Jan; 282(1-2):32-8. PubMed ID: 18248883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription factor p53 can regulate proliferation, apoptosis and secretory activity of luteinizing porcine ovarian granulosa cell cultured with and without ghrelin and FSH.
    Sirotkin AV; Benco A; Tandlmajerova A; Vasícek D; Kotwica J; Darlak K; Valenzuela F
    Reproduction; 2008 Nov; 136(5):611-8. PubMed ID: 18703674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and distribution of AP-1 transcription factors in the porcine ovary.
    Rusovici R; LaVoie HA
    Biol Reprod; 2003 Jul; 69(1):64-74. PubMed ID: 12606371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal expression of heparanase during human and rodent ovarian folliculogenesis.
    Haimov-Kochman R; Prus D; Zcharia E; Goldman-Wohl DS; Natanson-Yaron S; Greenfield C; Anteby EY; Reich R; Orly J; Tsafriri A; Hurwitz A; Vlodavsky I; Yagel S
    Biol Reprod; 2005 Jul; 73(1):20-8. PubMed ID: 15728796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoenzyme patterns of soluble glutathione S-transferases from rat adrenal gland and ovary.
    Sierakowski B; Kraus P
    Biochem Int; 1984 Mar; 8(3):361-7. PubMed ID: 6477607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligandin in the human ovary.
    Tiltman AJ
    J Pathol; 1984 Jan; 142(1):61-6. PubMed ID: 6366176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of glutathione transferase isoenzymes in the porcine ovary in relationship to follicular maturation and luteinization.
    Eliasson M; Stark T; DePierre JW
    Chem Biol Interact; 1999 Jan; 117(1):35-48. PubMed ID: 10190543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multihormonal regulation of ornithine decarboxylase activity in highly differentiated porcine granulosa cells in vitro.
    Veldhuis JD; Sweinberg S
    J Cell Physiol; 1981 Aug; 108(2):213-20. PubMed ID: 6267083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociated regulation of cellular progesterone secretion and cytosolic ornithine decarboxylase activity in isolated ovarian cells in vitro.
    Veldhuis JD; Sweinberg SK; Klase PA; Hammond JM
    Endocrinology; 1981 Nov; 109(5):1657-62. PubMed ID: 6795031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenylate cyclase of porcine granulosa cells: differential response to gonadotropins during follicle maturation.
    Lee CY
    Endocrinology; 1978 Oct; 103(4):1153-8. PubMed ID: 744137
    [No Abstract]   [Full Text] [Related]  

  • 19. Histochemical evaluation of delta 5,3 beta-OHSD activity in two types of porcine corpora lutea and granulosa cells in tissue culture.
    Gregoraszczuk E; Wojtusiak A
    Acta Histochem; 1982; 70(1):22-30. PubMed ID: 6808585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human ovarian 17-ketosteroid oxidoreductase: unique characteristics of the granulosa-luteal cell and stromal enzyme.
    Barbieri RL
    Am J Obstet Gynecol; 1992 Apr; 166(4):1117-23; discussion 1123-6. PubMed ID: 1566764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.