BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 8312266)

  • 1. Internal electron transfer in cytochrome c oxidase is coupled to the protonation of a group close to the bimetallic site.
    Hallén S; Brzezinski P; Malmström BG
    Biochemistry; 1994 Feb; 33(6):1467-72. PubMed ID: 8312266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internal electron transfer in cytochrome c oxidase from Rhodobacter sphaeroides.
    Adelroth P; Brzezinski P; Malmström BG
    Biochemistry; 1995 Mar; 34(9):2844-9. PubMed ID: 7893697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic coupling between electron and proton transfer in cytochrome c oxidase: simultaneous measurements of conductance and absorbance changes.
    Adelroth P; Sigurdson H; Hallén S; Brzezinski P
    Proc Natl Acad Sci U S A; 1996 Oct; 93(22):12292-7. PubMed ID: 8901574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of electron gating in proton pumping cytochrome c oxidase: the effect of pH and temperature on internal electron transfer.
    Brzezinski P; Malmström BG
    Biochim Biophys Acta; 1987 Oct; 894(1):29-38. PubMed ID: 2444256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal electron transfer in cytochrome c oxidase: evidence for a rapid equilibrium between cytochrome a and the bimetallic site.
    Oliveberg M; Malmström BG
    Biochemistry; 1991 Jul; 30(29):7053-7. PubMed ID: 1649622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of pH and temperature on the reaction of fully reduced and mixed-valence cytochrome c oxidase with dioxygen.
    Oliveberg M; Brzezinski P; Malmström BG
    Biochim Biophys Acta; 1989 Dec; 977(3):322-8. PubMed ID: 2556181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton-coupled structural changes upon binding of carbon monoxide to cytochrome cd1: a combined flash photolysis and X-ray crystallography study.
    Sjögren T; Svensson-Ek M; Hajdu J; Brzezinski P
    Biochemistry; 2000 Sep; 39(36):10967-74. PubMed ID: 10998233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand binding reveals protonation events at the active site of cytochrome c oxidase; is the K-pathway used for the transfer of H(+) or OH(-)?
    Sigurdson H; Brändén M; Namslauer A; Brzezinski P
    J Inorg Biochem; 2002 Feb; 88(3-4):335-42. PubMed ID: 11897348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transfer after flash photolysis of mixed-valence carboxycytochrome c oxidase.
    Boelens R; Wever R; Van Gelder BF
    Biochim Biophys Acta; 1982 Nov; 682(2):264-72. PubMed ID: 6293558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton transfer during the reaction between fully reduced cytochrome c oxidase and dioxygen: pH and deuterium isotope effects.
    Hallén S; Nilsson T
    Biochemistry; 1992 Dec; 31(47):11853-9. PubMed ID: 1332774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron redistribution in mixed valence cytochrome oxidase following photolysis of carboxy-oxidase.
    Harmon HJ
    J Bioenerg Biomembr; 1988 Dec; 20(6):735-48. PubMed ID: 2854130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular proton-transfer reactions in a membrane-bound proton pump: the effect of pH on the peroxy to ferryl transition in cytochrome c oxidase.
    Namslauer A; Aagaard A; Katsonouri A; Brzezinski P
    Biochemistry; 2003 Feb; 42(6):1488-98. PubMed ID: 12578361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroelectrochemical study of cytochrome c oxidase: pH and temperature dependences of the cytochrome potentials. Characterization of site-site interactions.
    Blair DF; Ellis WR; Wang H; Gray HB; Chan SI
    J Biol Chem; 1986 Sep; 261(25):11524-37. PubMed ID: 3017934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New transients in the electron-transfer dynamics of photolyzed mixed-valence CO-cytochrome c oxidase.
    Einarsdóttir O; Dawes TD; Georgiadis KE
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):6934-7. PubMed ID: 1323122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate enhancement of the internal electron transfer in cytochrome c oxidase by the formation of a peroxide complex; its implication on the reaction mechanism of cytochrome c oxidase.
    Gorren AC; Dekker H; Vlegels L; Wever R
    Biochim Biophys Acta; 1988 Mar; 932(3):277-86. PubMed ID: 2831974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron-transfer processes in carboxy-cytochrome c oxidase after photodissociation of cytochrome a3 2+ . CO.
    Boelens R; Wever R
    Biochim Biophys Acta; 1979 Aug; 547(2):296-310. PubMed ID: 223638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-temperature flash photolysis studies of cytochrome oxidase and its environment.
    Sharrock M; Yonetani T
    Biochim Biophys Acta; 1977 Dec; 462(3):718-30. PubMed ID: 202310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stopped-flow, laser-flash photolysis studies on the reactions of CO and O2 with the cytochrome caa3 complex from Bacillus subtilis: conservation of electron transfer pathways from cytochrome c to O2.
    Hill BC
    Biochemistry; 1996 May; 35(19):6136-43. PubMed ID: 8634256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved optical absorption studies of intramolecular electron transfer in cytochrome c oxidase.
    Georgiadis KE; Jhon NI; Einarsdóttir O
    Biochemistry; 1994 Aug; 33(31):9245-56. PubMed ID: 8049226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO binding to mitochondrial mixed valence state cytochrome oxidase at low temperatures.
    Clore GM; Chance EM
    Biochim Biophys Acta; 1980 Mar; 590(1):34-49. PubMed ID: 6243973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.