These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8312490)

  • 1. Does the use of DM-nitrophen, nitr-5, or diazo-2 interfere with the measurement of indo-1 fluorescence?
    Hadley RW; Kirby MS; Lederer WJ; Kao JP
    Biophys J; 1993 Dec; 65(6):2537-46. PubMed ID: 8312490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of photolabile calcium chelators on fluorescent calcium indicators.
    Zucker RS
    Cell Calcium; 1992 Jan; 13(1):29-40. PubMed ID: 1540986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photolysis of caged compounds characterized by ratiometric confocal microscopy: a new approach to homogeneously control and measure the calcium concentration in cardiac myocytes.
    Lipp P; Lüscher C; Niggli E
    Cell Calcium; 1996 Mar; 19(3):255-66. PubMed ID: 8732265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photolysis of caged Ca2+ facilitates and inactivates but does not directly excite light-sensitive channels in Drosophila photoreceptors.
    Hardie RC
    J Neurosci; 1995 Jan; 15(1 Pt 2):889-902. PubMed ID: 7529832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca(2+)-dependent inactivation of Ca2+ current in Aplysia neurons: kinetic studies using photolabile Ca2+ chelators.
    Fryer MW; Zucker RS
    J Physiol; 1993 May; 464():501-28. PubMed ID: 8229815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser photolysis of caged calcium: rates of calcium release by nitrophenyl-EGTA and DM-nitrophen.
    Ellis-Davies GC; Kaplan JH; Barsotti RJ
    Biophys J; 1996 Feb; 70(2):1006-16. PubMed ID: 8789118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photolytic manipulation of Ca2+ and the time course of slow, Ca(2+)-activated K+ current in rat hippocampal neurones.
    Lancaster B; Zucker RS
    J Physiol; 1994 Mar; 475(2):229-39. PubMed ID: 8021830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The calcium concentration clamp: spikes and reversible pulses using the photolabile chelator DM-nitrophen.
    Zucker RS
    Cell Calcium; 1993 Feb; 14(2):87-100. PubMed ID: 8458075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Millisecond studies of calcium-dependent exocytosis in pituitary melanotrophs: comparison of the photolabile calcium chelators nitrophenyl-EGTA and DM-nitrophen.
    Parsons TD; Ellis-Davies GC; Almers W
    Cell Calcium; 1996 Mar; 19(3):185-92. PubMed ID: 8732258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of intracellular Ca2+ concentration using Indo-1 during simultaneous flash photolysis to release Ca2+ from DM-nitrophen.
    Kirby MS; Hadley RW; Lederer WJ
    Pflugers Arch; 1994 May; 427(1-2):169-77. PubMed ID: 8058467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytoplasmic calcium buffer capacity determined with Nitr-5 and DM-nitrophen.
    al-Baldawi NF; Abercrombie RF
    Cell Calcium; 1995 Jun; 17(6):409-21. PubMed ID: 8521455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of Ca(2+)-transients elicited by flash photolysis of DM-nitrophen with a fast calcium indicator.
    Escobar AL; Cifuentes F; Vergara JL
    FEBS Lett; 1995 May; 364(3):335-8. PubMed ID: 7758592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium released by photolysis of DM-nitrophen triggers transmitter release at the crayfish neuromuscular junction.
    Mulkey RM; Zucker RS
    J Physiol; 1993 Mar; 462():243-60. PubMed ID: 8101226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of changing intracellular Ca2+ buffering on the excitability of cultured dorsal root ganglion neurones.
    Ayar A; Storer C; Tatham EL; Scott RH
    Neurosci Lett; 1999 Aug; 271(3):171-4. PubMed ID: 10507696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate of release of Ca2+ following laser photolysis of the DM-nitrophen-Ca2+ complex.
    McCray JA; Fidler-Lim N; Ellis-Davies GC; Kaplan JH
    Biochemistry; 1992 Sep; 31(37):8856-61. PubMed ID: 1390672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photolytic manipulation of [Ca2+]i reveals slow kinetics of potassium channels underlying the afterhyperpolarization in hippocampal pyramidal neurons.
    Sah P; Clements JD
    J Neurosci; 1999 May; 19(10):3657-64. PubMed ID: 10233997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca(2+)-dependent block and potentiation of L-type calcium current in guinea-pig ventricular myocytes.
    Bates SE; Gurney AM
    J Physiol; 1993 Jul; 466():345-65. PubMed ID: 8410697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium transients and the effect of a photolytically released calcium chelator during electrically induced contractions in rabbit rectococcygeus smooth muscle.
    Arner A; Malmqvist U; Rigler R
    Biophys J; 1998 Oct; 75(4):1895-903. PubMed ID: 9746530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of relaxation rate in skinned frog skeletal muscle fibers.
    Wahr PA; Johnson JD; Rall JA
    Am J Physiol; 1998 Jun; 274(6):C1608-15. PubMed ID: 9611126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photorelease techniques for raising or lowering intracellular Ca2+.
    Zucker R
    Methods Cell Biol; 1994; 40():31-63. PubMed ID: 8201983
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.