These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 8312563)

  • 41. Effect of microvillus deformability on leukocyte adhesion explored using adhesive dynamics simulations.
    Caputo KE; Hammer DA
    Biophys J; 2005 Jul; 89(1):187-200. PubMed ID: 15879471
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A stochastic model of leukocyte rolling.
    Zhao Y; Chien S; Skalak R
    Biophys J; 1995 Oct; 69(4):1309-20. PubMed ID: 8534801
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A dynamical model for receptor-mediated cell adhesion to surfaces.
    Hammer DA; Lauffenburger DA
    Biophys J; 1987 Sep; 52(3):475-87. PubMed ID: 2820521
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluctuations of cytoskeleton-bound microbeads--the effect of bead-receptor binding dynamics.
    Metzner C; Raupach C; Mierke CT; Fabry B
    J Phys Condens Matter; 2010 May; 22(19):194105. PubMed ID: 21386432
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A semianalytic model of leukocyte rolling.
    Krasik EF; Hammer DA
    Biophys J; 2004 Nov; 87(5):2919-30. PubMed ID: 15315955
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of flowing RBCs on adhesion of a circulating tumor cell in microvessels.
    Xiao LL; Liu Y; Chen S; Fu BM
    Biomech Model Mechanobiol; 2017 Apr; 16(2):597-610. PubMed ID: 27738841
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrodynamic forces applied on intercellular bonds, soluble molecules, and cell-surface receptors.
    Shankaran H; Neelamegham S
    Biophys J; 2004 Jan; 86(1 Pt 1):576-88. PubMed ID: 14695302
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transfer of tumor cells between cell aggregates as a model for adhesive changes in metastasis.
    Umbreit JN; Erbe RW
    Cancer Res; 1979 Jun; 39(6 Pt 1):2001-5. PubMed ID: 445400
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Measurement of neutrophil adhesion under conditions mimicking blood flow.
    Jutila MA; Walcheck B; Bargatze R; Palecanda A
    Methods Mol Biol; 2007; 412():239-56. PubMed ID: 18453116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Force distribution on multiple bonds controls the kinetics of adhesion in stretched cells.
    Isabey D; Féréol S; Caluch A; Fodil R; Louis B; Pelle G
    J Biomech; 2013 Jan; 46(2):307-13. PubMed ID: 23178039
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Significance of thermal fluctuations and hydrodynamic interactions in receptor-ligand-mediated adhesive dynamics of a spherical particle in wall-bound shear flow.
    Ramesh KV; Thaokar R; Prakash JR; Prabhakar R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022302. PubMed ID: 25768500
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Receptor-mediated adhesion phenomena. Model studies with the Radical-Flow Detachment Assay.
    Cozens-Roberts C; Quinn JA; Lauffenberger DA
    Biophys J; 1990 Jul; 58(1):107-25. PubMed ID: 2166596
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Motion of cells sedimenting on a solid surface in a laminar shear flow.
    Tissot O; Pierres A; Foa C; Delaage M; Bongrand P
    Biophys J; 1992 Jan; 61(1):204-15. PubMed ID: 1540690
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interaction forces between red cells agglutinated by antibody. IV. Time and force dependence of break-up.
    Tees DF; Coenen O; Goldsmith HL
    Biophys J; 1993 Sep; 65(3):1318-34. PubMed ID: 8241411
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Toward a new approach in tumor cell heterogeneity studies using the concept of order.
    Dussert C; Kopp F; Gandilhon P; Pourreau-Schneider N; Rasigni M; Palmari J; Rasigni G; Martin PM; Llebaria A
    Anal Cell Pathol; 1989 Apr; 1(2):123-32. PubMed ID: 2535051
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Cytometric method of determining the parameters of the interaction of synthetic immunostimulants with the lymphocytic surface].
    Shcherbukhin VV; Zasypkin DV; Ataullakhanov FI; Skuĭbin BG
    Tsitologiia; 1988 Oct; 30(10):1218-25. PubMed ID: 3245090
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of curvature and cell-cell interaction on cell adhesion in microvessels.
    Yan WW; Liu Y; Fu BM
    Biomech Model Mechanobiol; 2010 Oct; 9(5):629-40. PubMed ID: 20224897
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficiency of initiating cell adhesion in hydrodynamic flow.
    Korn C; Schwarz US
    Phys Rev Lett; 2006 Sep; 97(13):138103. PubMed ID: 17026079
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neutrophil adhesive contact dependence on impingement force.
    Spillmann CM; Lomakina E; Waugh RE
    Biophys J; 2004 Dec; 87(6):4237-45. PubMed ID: 15361413
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mathematical model for the effects of adhesion and mechanics on cell migration speed.
    DiMilla PA; Barbee K; Lauffenburger DA
    Biophys J; 1991 Jul; 60(1):15-37. PubMed ID: 1883934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.