These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 8312739)
1. Transposon-induced inversion in Antirrhinum modifies nivea gene expression to give a novel flower color pattern under the control of cycloidearadialis. Lister C; Jackson D; Martin C Plant Cell; 1993 Nov; 5(11):1541-53. PubMed ID: 8312739 [TBL] [Abstract][Full Text] [Related]
2. Molecular analysis of a transposon-induced deletion of the nivea locus in Antirrhinum majus. Lister C; Martin C Genetics; 1989 Oct; 123(2):417-25. PubMed ID: 2555255 [TBL] [Abstract][Full Text] [Related]
3. Genome juggling by transposons: Tam3-induced rearrangements in Antirrhinum majus. Martin C; Lister C Dev Genet; 1989; 10(6):438-51. PubMed ID: 2557989 [TBL] [Abstract][Full Text] [Related]
4. Stable transcription activities dependent on an orientation of Tam3 transposon insertions into Antirrhinum and yeast promoters occur only within chromatin. Uchiyama T; Fujino K; Ogawa T; Wakatsuki A; Kishima Y; Mikami T; Sano Y Plant Physiol; 2009 Nov; 151(3):1557-69. PubMed ID: 19759347 [TBL] [Abstract][Full Text] [Related]
5. A pair of transposons coordinately suppresses gene expression, independent of pathways mediated by siRNA in Antirrhinum. Uchiyama T; Hiura S; Ebinuma I; Senda M; Mikami T; Martin C; Kishima Y New Phytol; 2013 Jan; 197(2):431-440. PubMed ID: 23190182 [TBL] [Abstract][Full Text] [Related]
6. Phenotypic effects of short-range and aberrant transposition in Antirrhinum majus. Hudson AD; Carpenter R; Coen ES Plant Mol Biol; 1990 May; 14(5):835-44. PubMed ID: 1966387 [TBL] [Abstract][Full Text] [Related]
7. Allelic interactions at the nivea locus of Antirrhinum. Bollmann J; Carpenter R; Coen ES Plant Cell; 1991 Dec; 3(12):1327-36. PubMed ID: 1840900 [TBL] [Abstract][Full Text] [Related]
8. Pigmentation mutants produced by transposon mutagenesis in Antirrhinum majus. Luo D; Coen ES; Doyle S; Carpenter R Plant J; 1991 Jul; 1(1):59-69. PubMed ID: 1668965 [TBL] [Abstract][Full Text] [Related]
9. Molecular analysis of paramutant plants of Antirrhinum majus and the involvement of transposable elements. Krebbers E; Hehl R; Piotrowiak R; Lönnig WE; Sommer H; Saedler H Mol Gen Genet; 1987 Oct; 209(3):499-507. PubMed ID: 17193710 [TBL] [Abstract][Full Text] [Related]
10. Tam3 in Antirrhinum majus is exceptional transposon in resistant to alteration by abortive gap repair: identification of nested transposons. Yamashita S; Mikami T; Kishima Y Mol Gen Genet; 1998 Sep; 259(5):468-74. PubMed ID: 9790577 [TBL] [Abstract][Full Text] [Related]
11. A semi-dominant allele, niv-525, acts in trans to inhibit expression of its wild-type homologue in Antirrhinum majus. Coen ES; Carpenter R EMBO J; 1988 Apr; 7(4):877-83. PubMed ID: 3402437 [TBL] [Abstract][Full Text] [Related]
12. Resistance to gap repair of the transposon Tam3 in Antirrhinum majus: a role of the end regions. Yamashita S; Takano-Shimizu T; Kitamura K; Mikami T; Kishima Y Genetics; 1999 Dec; 153(4):1899-908. PubMed ID: 10581294 [TBL] [Abstract][Full Text] [Related]
13. Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Coen ES; Carpenter R; Martin C Cell; 1986 Oct; 47(2):285-96. PubMed ID: 3021338 [TBL] [Abstract][Full Text] [Related]
14. The molecular basis of incomplete dominance at the A locus of CHS-D in the common morning glory, Ipomoea purpurea. Johzuka-Hisatomi Y; Noguchi H; Iida S J Plant Res; 2011 Mar; 124(2):299-304. PubMed ID: 20680382 [TBL] [Abstract][Full Text] [Related]
15. Genetic interactions underlying flower color patterns in Antirrhinum majus. Almeida J; Carpenter R; Robbins TP; Martin C; Coen ES Genes Dev; 1989 Nov; 3(11):1758-67. PubMed ID: 2558047 [TBL] [Abstract][Full Text] [Related]
16. Tam3 produces a suppressible allele of the DAG locus of Antirrhinum majus similar to Mu-suppressible alleles of maize. Chatterjee M; Martin C Plant J; 1997 Apr; 11(4):759-71. PubMed ID: 9161034 [TBL] [Abstract][Full Text] [Related]
17. A chromosome rearrangement suggests that donor and recipient sites are associated during Tam3 transposition in Antirrhinum majus. Robbins TP; Carpenter R; Coen ES EMBO J; 1989 Jan; 8(1):5-13. PubMed ID: 16453869 [TBL] [Abstract][Full Text] [Related]
18. Position effect of the excision frequency of the Antirrhinum transposon Tam3: implications for the degree of position-dependent methylation in the ends of the element. Kitamura K; Hashida SN; Mikami T; Kishima Y Plant Mol Biol; 2001 Nov; 47(4):475-90. PubMed ID: 11669573 [TBL] [Abstract][Full Text] [Related]
19. Structural conservation of the transposon Tam3 family in Antirrhinum majus and estimation of the number of copies able to transpose. Kishima Y; Yamashita S; Martin C; Mikami T Plant Mol Biol; 1999 Jan; 39(2):299-308. PubMed ID: 10080696 [TBL] [Abstract][Full Text] [Related]
20. Cloning and structural analysis of the anthocyanin pigmentation locus Rt of Petunia hybrida: characterization of insertion sequences in two mutant alleles. Kroon J; Souer E; de Graaff A; Xue Y; Mol J; Koes R Plant J; 1994 Jan; 5(1):69-80. PubMed ID: 8130799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]