BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8312823)

  • 1. Silicone replica technique and automatic confocal topometry for determination of corneal surface roughness.
    Bachmann W; Jean B; Bende T; Wohlrab M; Thiel HJ
    Ger J Ophthalmol; 1993 Nov; 2(6):400-3. PubMed ID: 8312823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Silicone impression procedure. Principles for determining ablation and healing parameters in vitro and in vivo].
    Bachmann W; Jean B; Bende T; Seiler T; Csuzda I; Thiel HJ
    Ophthalmologe; 1993 Apr; 90(2):178-82. PubMed ID: 8490303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon cast method for quantification of photoablation.
    Bachmann W; Jean B; Bende T; Seiler T; Hibst R; Thiel HJ
    Refract Corneal Surg; 1992; 8(5):363-7. PubMed ID: 1450117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of excimer laser beam delivery and beam shaping on corneal sphericity in photorefractive keratectomy.
    Müller B; Boeck T; Hartmann C
    J Cataract Refract Surg; 2004 Feb; 30(2):464-70. PubMed ID: 15030843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Moist ablation of the corneal surface with the Er:YAG laser. Results of optimizing ablation].
    Bende T; Jean B; Matallana M; Seiler T; Steiner R
    Ophthalmologe; 1994 Oct; 91(5):651-4. PubMed ID: 7812099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system.
    Mrochen M; Schelling U; Wuellner C; Donitzky C
    J Cataract Refract Surg; 2009 Feb; 35(2):363-73. PubMed ID: 19185256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoablation of gelatin with the free-electron laser between 2.7 and 6.7 microns.
    Jean B; Bende T
    J Refract Corneal Surg; 1994; 10(4):433-8. PubMed ID: 7528615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of corneal ablation efficiency using ultraviolet 213-nm solid state laser pulses.
    Dair GT; Pelouch WS; van Saarloos PP; Lloyd DJ; Linares SM; Reinholz F
    Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2752-6. PubMed ID: 10509676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ablation rates and surface ultrastructure of 193 nm excimer laser keratectomies.
    Campos M; Wang XW; Hertzog L; Lee M; Clapham T; Trokel SL; McDonnell PJ
    Invest Ophthalmol Vis Sci; 1993 Jul; 34(8):2493-500. PubMed ID: 8325755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of 3 excimer laser ablation frequencies (200 Hz, 500 Hz, 1000 Hz) on the cornea using a 1000 Hz scanning-spot excimer laser.
    Khoramnia R; Lohmann CP; Wuellner C; Kobuch KA; Donitzky C; Winkler von Mohrenfels C
    J Cataract Refract Surg; 2010 Aug; 36(8):1385-91. PubMed ID: 20656164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of corneal ablation with picosecond laser pulses at 211 nm and 263 nm.
    Hu XH; Juhasz T
    Lasers Surg Med; 1996; 18(4):373-80. PubMed ID: 8732576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic force microscopy analysis of normal and photoablated porcine corneas.
    Lombardo M; De Santo MP; Lombardo G; Barberi R; Serrao S
    J Biomech; 2006; 39(14):2719-24. PubMed ID: 16209868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new procedure for evaluating smoothness of corneal surface following 193-nanometer excimer laser ablation.
    Liang FQ; Geasey SD; del Cerro M; Aquavella JV
    Refract Corneal Surg; 1992; 8(6):459-65. PubMed ID: 1493119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confocal microscopic characterization of wound repair after photorefractive keratectomy.
    Møller-Pedersen T; Li HF; Petroll WM; Cavanagh HD; Jester JV
    Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):487-501. PubMed ID: 9501858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human corneal ablation threshold using the 193-nm ArF excimer laser.
    Berns MW; Chao L; Giebel AW; Liaw LH; Andrews J; VerSteeg B
    Invest Ophthalmol Vis Sci; 1999 Apr; 40(5):826-30. PubMed ID: 10102278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of topical steroids on refractive outcome and corneal haze, thickness, and curvature after photorefractive keratectomy with a 6.0-mm ablation diameter.
    Aras C; Ozdamar A; Aktunç R; Erçikan C
    Ophthalmic Surg Lasers; 1998 Aug; 29(8):621-7. PubMed ID: 9715485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction.
    Roszkowska AM; Korn G; Lenzner M; Kirsch M; Kittelmann O; Zatonski R; Ferreri P; Ferreri G
    J Cataract Refract Surg; 2004 Dec; 30(12):2536-42. PubMed ID: 15617921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopic study of the human cornea following excimer laser keratectomy.
    Nógrádi A; Hopp B; Révész K; Szabó G; Bor Z; Kolozsvari L
    Exp Eye Res; 2000 Mar; 70(3):363-8. PubMed ID: 10712822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Changes in Descemet's membrane and endothelium after photorefractive keratectomy in rabbits].
    Wu Z; Xu Y; Xie C
    Zhonghua Yan Ke Za Zhi; 2001 Mar; 37(2):90-3. PubMed ID: 11864398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of laser repetition rate on corneal tissue ablation for 193-nm excimer laser light.
    Shanyfelt LM; Dickrell PL; Edelhauser HF; Hahn DW
    Lasers Surg Med; 2008 Sep; 40(7):483-93. PubMed ID: 18727026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.