These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 8312855)

  • 1. Characteristic bleaching profiles of cyanine dyes depending on active oxygen species in the controlled Fenton reaction.
    Nakagawa Y; Hori H; Yamamoto I; Terada H
    Biol Pharm Bull; 1993 Nov; 16(11):1061-4. PubMed ID: 8312855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C; Vile GF; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of chelating agents and amino acids in preventing free radical formation in bleaching systems.
    Hodes J; Sielaff P; Metz H; Kessler-Becker D; Gassenmeier T; Neubert RHH
    Free Radic Biol Med; 2018 Dec; 129():194-201. PubMed ID: 30243703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios.
    Fischbacher A; von Sonntag C; Schmidt TC
    Chemosphere; 2017 Sep; 182():738-744. PubMed ID: 28531840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide-induced bleaching of streptocyanine dyes: Application to assay the enzymatic activity of superoxide dismutases.
    Vinatier V; Guieu V; Madaule Y; Maturano M; Payrastre C; Hoffmann P
    Anal Biochem; 2010 Oct; 405(2):255-9. PubMed ID: 20570646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biologically active cyanine dyes as probes for the identification of active oxygen species.
    Hori H; Nakagawa Y; Ojima H; Niijima T; Terada H
    Adv Exp Med Biol; 1992; 317():255-60. PubMed ID: 1337657
    [No Abstract]   [Full Text] [Related]  

  • 7. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Comparison of hydroxyl radical production rates in H2O2 solution under homogeneous catalysis of Fe3+ or Fe2+].
    Gao YX; Zhang Y; Yang M; Hu JY
    Huan Jing Ke Xue; 2006 Feb; 27(2):305-9. PubMed ID: 16686194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of reaction of a suggested superoxide-dismutase mimic, Fe(II)-N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine.
    Iuliano L; Pedersen JZ; Ghiselli A; Praticò D; Rotilio G; Violi F
    Arch Biochem Biophys; 1992 Feb; 293(1):153-7. PubMed ID: 1309981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide precipitates catastrophic chromosome fragmentation by bolstering both hydrogen peroxide and Fe(II) Fenton reactants in E. coli.
    Agashe P; Kuzminov A
    J Biol Chem; 2022 Apr; 298(4):101825. PubMed ID: 35288189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effect of hydrogen peroxide and superoxide anion on apoptosis and proliferation of vascular smooth muscle cells.
    Li PF; Dietz R; von Harsdorf R
    Circulation; 1997 Nov; 96(10):3602-9. PubMed ID: 9396461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalysis of the Haber-Weiss reaction by iron-diethylenetriaminepentaacetate.
    Egan TJ; Barthakur SR; Aisen P
    J Inorg Biochem; 1992 Dec; 48(4):241-9. PubMed ID: 1336036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vanadate-mediated hydroxyl radical generation from superoxide radical in the presence of NADH: Haber-Weiss vs Fenton mechanism.
    Shi X; Dalal NS
    Arch Biochem Biophys; 1993 Dec; 307(2):336-41. PubMed ID: 8274019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superoxide-dependent reduction of free Fe(3+) and release of Fe(2+) from ferritin by the physiologically-occurring Cu(I)-glutathione complex.
    Aliaga ME; Carrasco-Pozo C; López-Alarcón C; Olea-Azar C; Speisky H
    Bioorg Med Chem; 2011 Jan; 19(1):534-41. PubMed ID: 21115254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction.
    Hug SJ; Leupin O
    Environ Sci Technol; 2003 Jun; 37(12):2734-42. PubMed ID: 12854713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyl radical generation in electro-Fenton process with a gas-diffusion electrode: Linkages with electro-chemical generation of hydrogen peroxide and iron redox cycle.
    Yatagai T; Ohkawa Y; Kubo D; Kawase Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jan; 52(1):74-83. PubMed ID: 27726493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superoxide dismutase and Fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II).
    Gutteridge JM; Maidt L; Poyer L
    Biochem J; 1990 Jul; 269(1):169-74. PubMed ID: 2165392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pentoxifylline. A hydroxyl radical scavenger.
    Freitas JP; Filipe PM
    Biol Trace Elem Res; 1995; 47(1-3):307-11. PubMed ID: 7779563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manganese complexes and the generation and scavenging of hydroxyl free radicals.
    Cheton PL; Archibald FS
    Free Radic Biol Med; 1988; 5(5-6):325-33. PubMed ID: 2855733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pro-oxidant activity of aluminum: promoting the Fenton reaction by reducing Fe(III) to Fe(II).
    Ruipérez F; Mujika JI; Ugalde JM; Exley C; Lopez X
    J Inorg Biochem; 2012 Dec; 117():118-23. PubMed ID: 23085591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.