BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 8313150)

  • 21. Nucleus accumbens dopamine depletions make animals highly sensitive to high fixed ratio requirements but do not impair primary food reinforcement.
    Salamone JD; Wisniecki A; Carlson BB; Correa M
    Neuroscience; 2001; 105(4):863-70. PubMed ID: 11530224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleus accumbens and effort-related functions: behavioral and neural markers of the interactions between adenosine A2A and dopamine D2 receptors.
    Farrar AM; Segovia KN; Randall PA; Nunes EJ; Collins LE; Stopper CM; Port RG; Hockemeyer J; Müller CE; Correa M; Salamone JD
    Neuroscience; 2010 Apr; 166(4):1056-67. PubMed ID: 20096336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Slow phasic changes in nucleus accumbens dopamine release during fixed ratio acquisition: a microdialysis study.
    Segovia KN; Correa M; Salamone JD
    Neuroscience; 2011 Nov; 196():178-88. PubMed ID: 21884757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nucleus accumbens dopamine depletions alter relative response allocation in a T-maze cost/benefit task.
    Cousins MS; Atherton A; Turner L; Salamone JD
    Behav Brain Res; 1996 Jan; 74(1-2):189-97. PubMed ID: 8851929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accumbens dopamine and the regulation of effort in food-seeking behavior: modulation of work output by different ratio or force requirements.
    Ishiwari K; Weber SM; Mingote S; Correa M; Salamone JD
    Behav Brain Res; 2004 May; 151(1-2):83-91. PubMed ID: 15084424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A neurochemical and behavioral investigation of the involvement of nucleus accumbens dopamine in instrumental avoidance.
    McCullough LD; Sokolowski JD; Salamone JD
    Neuroscience; 1993 Feb; 52(4):919-25. PubMed ID: 8450978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ratio and time requirements on operant schedules: effort-related effects of nucleus accumbens dopamine depletions.
    Mingote S; Weber SM; Ishiwari K; Correa M; Salamone JD
    Eur J Neurosci; 2005 Mar; 21(6):1749-57. PubMed ID: 15845103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in nucleus accumbens and neostriatal c-Fos and DARPP-32 immunoreactivity during different stages of food-reinforced instrumental training.
    Segovia KN; Correa M; Lennington JB; Conover JC; Salamone JD
    Eur J Neurosci; 2012 Apr; 35(8):1354-67. PubMed ID: 22462413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of d-amphetamine and apomorphine upon operant behavior and schedule-induced licking in rats with 6-hydroxydopamine-induced lesions of the nucleus accumbens.
    Robbins TW; Roberts DC; Koob GF
    J Pharmacol Exp Ther; 1983 Mar; 224(3):662-73. PubMed ID: 6402587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine.
    Salamone JD; Correa M
    Behav Brain Res; 2002 Dec; 137(1-2):3-25. PubMed ID: 12445713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of combined or separate 5,7-dihydroxytryptamine lesions of the dorsal and median raphe nuclei on responding maintained by a DRL 20s schedule of food reinforcement.
    Fletcher PJ
    Brain Res; 1995 Mar; 675(1-2):45-54. PubMed ID: 7540930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ventrolateral striatal dopamine depletions impair feeding and food handling in rats.
    Salamone JD; Mahan K; Rogers S
    Pharmacol Biochem Behav; 1993 Mar; 44(3):605-10. PubMed ID: 8451265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential activation of accumbens shell and core dopamine by sucrose reinforcement with nose poking and with lever pressing.
    Bassareo V; Cucca F; Frau R; Di Chiara G
    Behav Brain Res; 2015 Nov; 294():215-23. PubMed ID: 26275926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Force requirements in lever-pressing and responding after haloperidol.
    Asin KE; Fibiger HC
    Pharmacol Biochem Behav; 1984 Mar; 20(3):323-6. PubMed ID: 6709668
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A microdialysis study of nucleus accumbens core and shell dopamine during operant responding in the rat.
    Sokolowski JD; Conlan AN; Salamone JD
    Neuroscience; 1998 Oct; 86(3):1001-9. PubMed ID: 9692735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleus accumbens dopamine depletions make rats more sensitive to high ratio requirements but do not impair primary food reinforcement.
    Aberman JE; Salamone JD
    Neuroscience; 1999; 92(2):545-52. PubMed ID: 10408603
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical monitoring of extracellular dopamine in nucleus accumbens of rats lever-pressing for food.
    Kiyatkin EA; Gratton A
    Brain Res; 1994 Aug; 652(2):225-34. PubMed ID: 7953734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detailed analysis of food-reinforced operant lever pressing distinguishes effects of a cannabinoid CB1 inverse agonist and dopamine D1 and D2 antagonists.
    McLaughlin PJ; Winston KM; Swezey LA; Vemuri VK; Makriyannis A; Salamone JD
    Pharmacol Biochem Behav; 2010 Jul; 96(1):75-81. PubMed ID: 20403373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential effects of the adenosine A₂A agonist CGS-21680 and haloperidol on food-reinforced fixed ratio responding in the rat.
    Jones-Cage C; Stratford TR; Wirtshafter D
    Psychopharmacology (Berl); 2012 Mar; 220(1):205-13. PubMed ID: 21898173
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dopaminergic substrates of amphetamine-induced place preference conditioning.
    Spyraki C; Fibiger HC; Phillips AG
    Brain Res; 1982 Dec; 253(1-2):185-93. PubMed ID: 6817850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.